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Abstract

By measuring the azimuthal correlations between two high pT hadrons, one can

extract jet properties such as the fragmentation transverse momentum jT and the

intrinsic transverse momentum kT . In longitudinally polarized p+p collisions, differ-

ences in the extracted average kT for parallel and anti-parallel helicity combinations

(double asymmetry) may give information on the relationship between the polariza-

tion and kT , and the orbital angular momentum of the hard-scattered partons. In

this dissertation we present the theoretical motivation, physics technique, analysis

method, Monte Carlo modeling and simulation, and results of the analysis for π0 -

h± azimuthal correlations in PHENIX with data from Run3 at RHIC.
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Chapter 1

Introduction

The study we propose to make supposes a ready knowledge of a very specific field:

spin physics. Spin physics is a branch of experimental (and theoretical) particle

physics; in order to ease the non-expert reader gently into the subject matter we will

begin with a review of experimental particle physics, laying a heavy accent on the

information relevant to spin physics and more particularly to the present analysis.

1.1 High Energy Particle Physics

Particle physics deals with the study of the elementary constituents of matter. The

word ”elementary” is used in the sense that such particles have no known structure,

they are considered to be pointlike. How pointlike is pointlike? That depends on the

spatial resolution of the probe used to investigate the possible structure. The spatial

resolution of a beam of momentum p is given by:

∆r ≈ h

p sin θ
(1.1)

1



Chapter 1. Introduction

where θ is the viewing angle of the probe to the target and ∆r is the distance

between elements that are to be distinguished. In the early 20th century, particle

beam energies from accelerators reached only a few MeV , and their resolution was so

poor that protons and neutrons could be considered pointlike. Today the fundamen-

tal particles appear to be quarks and leptons, unified in what is called the Standard

Model.

1.1.1 Experimental Setups

Two types of experiments exist as shown in Fig. 1.1.

1. An accelerated beam on a fixed target can be used for the production of a

secondary beam of relatively short-lived particles for kinematic reasons, or, if

a particular aspect of the fixed target (like polarization) is difficult to achieve

in a beam. The center of mass energy available for particle production is:

√
s =

√
2mtE (1.2)

where E is the energy of the beam particles and mt the mass of the target

particles. The rest of the energy goes into the kinetic energy of the produced

particles. Early experiments in spin physics would use fixed targets of polarized

protons and a beam of accelerated leptons.

2. For beam-beam collisions the center of mass energy available for particle pro-

duction is:

√
s = 2E (1.3)

with E the energy of each beam (assuming equal energies). This type of colli-

sion also has the advantage of spreading out the region of particle production

2



Chapter 1. Introduction

more evenly over all of space instead of focussing the created particles mainly

in the forward region. This enables easier characterization but often requires

more detectors.

a/b ~ Es cd): →colliding particles (ab 

aE ~ s cd): →fixed target (ab 

ap

bpcp

dp

ap

cp

dp

Figure 1.1: The two basic types of colliding particle experiments: fixed target and
center-of-mass collisions.

In either type of collision a physical quantity that is of paramount importance is

the luminosity. It is a measure of the amount of beam and the expected number of

collisions. If two beams cross, or a beam collides with a fixed target, the probability

for an interaction is proportional to the intensity of the beam(s) and the density of

the target material. For an intersecting storage ring collider (the case of the present

analysis) the luminosity is given by:

L = fn
N1N2

A
(1.4)

3



Chapter 1. Introduction

where f is the revolution frequency, n the number of bunches in the ring, Ni the

number of particles in each beam, and A is the cross-section of the beam. Luminosity

is given in units of inverse surface area per unit time. The integrated luminosity L̂

is a quantity that is quoted even more frequently and is given by:

L̂ =
∫
L(t)dt (1.5)

Integrated luminosity is given in units of inverse area, usually pb−1, nb−1 or µb−1

where b is a barn = 10−28m2. By multiplying L̂ by the cross-section for a particular

process or particle, the number of corresponding processes or particles, respectively,

is obtained:

N = L̂ · σ (1.6)

1.1.2 The Standard Model

In 1964 Gell-Mann and Zweig posited the existence of quarks to explain the

hadronic ”zoo”, the large number of strongly interacting particles that had been

created in the 1950’s and 1960’s by higher and higher energy particle accelerators.

Quarks have flavor, fractional charge, spin 1
2
, and later it was discovered, a new

quantum number called ”color”.

There are three colors labeled: red, blue and green. Quark combinations can

only exist in colorless states: 3 differently colored quarks form a baryon; a colored

quark and an anti-quark with the corresponding anti-color form a meson. Baryons

and mesons together are called hadrons.

Practically all experimental data from high energy experiments can be accounted

for by the Standard Model of particles and their interactions. All matter is made of
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six quarks and six leptons plus their anti-particles. The quarks feel the strong nuclear

force, the leptons do not. The charged particles feel the electromagnetic force and

they all feel the weak nuclear force and gravity. All these particles are fermions

because they are spin 1
2

particles; they are categorized in Table 1.1. Strangely, these

particles are grouped into three families, each identical to the other except for the

particles’ mass and flavor.

Family 1 Family 2 Family 3 Q/|e|

electron (e) muon (µ) tau (τ) -1

e-neutrino (νe) µ-neutrino (νµ) τ -neutrino (ντ ) 0

up quark (u) charm quark (c) top quark (t) +2
3

down quark (d) strange quark (s) bottom quark (b) −1
3

Table 1.1: Standard Model fermions. The first two rows are leptons, the second two
rows are quarks. The columns represent the ”families” of particles.

The Standard Model also includes the interactions between particles. The forces

are described in quantum language as the exchange of bosons (spin 1 particles)

between the fermions (see Table 1.2).

In 1969 after the discovery of point-like particles within the proton, R. Feynman

invented the ”partonic model” to describe experimental results [1]. Partons are found

to have quark-like properties, and eventually partons become a term used for quarks

and the vector bosons that carry the color charge, the gluons.

5
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Force Particle Relative Strength

Strong gluon (G) 1

Electromagnetic photon (γ) 1
137

Weak Z0,W± 10−7

Gravity graviton (g) 10−39

Table 1.2: Standard Model bosons. Note that the graviton (g) has spin 2, not spin
1 as the others do.

1.2 The Proton

In this quark model the proton is a baryon, composed of two up quarks and a

down quark (Fig. 1.2). The three quarks each carry one of the three colors and by

assigning a spin up for two quarks and spin down for the third many of the physical

attributes of the proton can be explained:

• It’s charge is the sum of the three quark charges:

Q =
2

3
e+

2

3
e− 1

3
e = e (1.7)

• It is colorless because of the red-green-blue color combination.

• At first glance a simple sum of quark spins would appear to give the proton its

spin:

Sz =
h̄

2
+
h̄

2
− h̄

2
=
h̄

2
(1.8)
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• Even a more complicated derived product such as the magnetic moment ap-

pears to be explained by the simple model [2]. The magnetic moment of the

proton could be written as a sum of the magnetic moments of the three quarks.

To do so the wave function of the polarized proton would first be written as

the normalized linear combination of the different spin (2↑,1↓)- flavor (uud)-

color (colorless) combinations:

P ↑ = 1√
18

(
2u↑ru

↑
bu
↓
g + 2u↑bu

↑
gu
↓
r + 2u↑gu

↑
ru
↓
b + u↑ru

↓
bu
↑
g + u↑bu

↓
ru
↑
b

+u↑bu
↓
ru
↑
g + u↑ru

↓
bu
↑
g + u↑gu

↓
ru
↓
b + u↑ru

↓
gu
↓
b

) (1.9)

from this equation we deduce that the magnetic moment of the proton would

be:

µP =
4

3
µu −

1

3
µd (1.10)

where the magnetic moments of the quarks are given by:

µq =
Qq

2mq

(1.11)

with Qq the charge of the quark, and mq the mass of the quark obtained by

attributing a third of the mass of the proton for each quark, which of course

ignores binding energy. The value for the proton’s magnetic moment thus

obtained is 2.79nm which is in remarkable agreement with the measured value

of 2.7928456nm obtained experimentally [3].

Why does this model not stand up to closer scrutiny? The answer to this question

lies with Quantum Chromodynamics (QCD), the theory of quarks and gluons which

describes all strong-interaction experiments at all energies, high and low.
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Simple Proton Model

u

d

u

Figure 1.2: The simple quark model of the proton

1.3 Quantum Chromodynamics

The Standard Model is a well established theory applicable over a wide range

of conditions. Beyond the simple cataloging of particles, it combines two theories

of particle physics into a single framework to describe all interactions of subatomic

particles, except those due to gravity. These two components of the Standard Model

are Electroweak theory, which describes interactions via the electromagnetic and

weak interactions, and Quantum Chromodynamics (QCD).

To understand the effects and workings of QCD a quick comparison with QED

(Quantum Electrodynamics) is useful:

• Photons couple to electric charge, but are chargeless themselves. Gluons couple
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to and carry color. Therefore gluons can interact with each other.

• The coupling constant for the strong force is αS ≈ 1 while the coupling constant

for the electromagnetic force (QED) is α ≈ 1/137. This means that higher order

diagrams in QCD as illustrated in Fig. 1.3 carry as much probability weight as

the lower order diagrams, unlike QED.

The consequences of these are twofold: Asymptotic Freedom and Confinement.

In fact the strong coupling constant is misnamed. It is not really constant, but varies

as a function of the distance between interacting particles. This is also known as the

running of the coupling constant αs. At low momentum transfer and large distance

αs is much stronger (and effectively ≈ 1) than at small distances and high momentum

transfer. Asymptotic Freedom refers to the weakness of the short-distance interaction

(high energies). Confinement on the other hand, follows from the fact that strong

interaction is very strong at long distances (low energies), with αS ≈ 1. The detailed

evidence for the coexistence of Asymptotic Freedom and Confinement in QCD is

based on a complicated web of analytical and numerical results and inferences.

At close distance then, calculation of cross-sections from Feynman Diagrams is

possible. This regime is known as perturbative QCD (pQCD). Non-perturbative

QCD is essentially concerned with the composite hadrons. It models the formation

of hadrons, the structure of hadrons and interactions between the different hadrons.

The crux of the problem with QCD is that although it is able to accurately explain

many strong phenomena, it leaves some issues unresolved. For example, although

the necessity of having colorless hadrons explains the baryon and meson structure it

does not explain why no other colorless combinations, such as dibaryons, dimesons,

pentaquarks or others have been observed.
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g

q

q

q’

’q

 QCD Leading Orderq q→ qq

 ~ 12
sα ~ σ

g g

q

q

q’

’q

 QCD Higher Orderq q→ qq

 ~ 14
sα ~ σ

q

q

γ

-e

+e

-µ

+µ

 Leading Order-µ+µ → -e+e

2

137
1= 2α ~ σ

γ γ

-e

+e

-e

+e

-µ

+µ

 Higher Order-µ+µ → -e+e

4

137
1 = 4α ~ σ

Figure 1.3: QED and QCD Feynman Diagrams. The probability amplitude of a
particular diagram is proportional to the factors that are given by each particle
line and vertex. Each vertex carries a

√
α factor, so that higher order processes,

even though they are more numerous occur less frequently in QED because of this
attenuation factor. This is not true in QCD as αS → 1. The cross-section for a
particular diagram is then the square of all these factors.
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Another way of looking at these attributes is to consider the potential: QED: V = −α
r

QCD: Vs = −4
3

αs

r
+ kr

(1.12)

The second term in the QCD potential acts like a spring, the greater the distance,

the stronger the attractive force. When separating two electrically charged particles,

the number of field lines remains the same, so the density diminishes and so does

the force. The field lines between quarks can be thought of as strings; when the

quarks are pulled apart the lines come together forming a dense flux tube. At the

limit of the strings’ length it is impossible to pull the quarks apart without breaking

them. In doing so enough energy is provided to create qq̄ pairs from the vacuum

so that each quark now has a new, closer neighbour to interact with. The result is

that no quark has ever been seen alone, they always come contained in baryons (qqq)

or mesons (qq̄). The process of creating such particles by breaking quarks (or glu-

ons) apart is called hadronization or fragmentation. The probability of a particular

flavor of parton hadronizing in a certain way is given by Fragmentation Functions

(FFs). Fragmentation Functions are determined by matching the experimental data

to various models [4].

If the process is hard enough a number of particles will be created, all of which

will move in approximately the same direction as the original interacting parton.

This is called a jet (see Fig. 1.4).

The results of this more in depth look at the strong force means we must modify

our picture of the proton:

• In addition to the three quarks that carry the quantum numbers (valence

quarks), the proton is composed of gluons which carry the force as well as

quark - anti-quark pairs that are constantly appearing and disappearing (sea

quarks).
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 jetjet)→colliding partons (ab 

ap bp
cp

dp

jet 1

jet 2

Figure 1.4: Jet-jet production cartoon. Two colliding partons result in two jets.
Note that jet momentum is conserved: p̂c =

∑
i ~pjet1 and p̂d =

∑
i ~pjet2.

• The mass of the quarks cannot be considered to be 1/3 of the mass of the

proton.

• The simple model for magnetic moments has no Confinement. The effective

radius of the proton is infinite and therefore invalidates the calculation (yet it

is still an intriguing result).

1.4 Initial and Final State Variables

One of the fundamental problems in particle physics is obtaining information about

the initial colored partons from the measured physical quantities of the colorless
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hadrons. In other words, describing initial state variables as a function of final state

variables.

1. Some of the most often used initial state variables that relate to our analysis

include:

• Momentum fraction

When two protons collide, the interaction takes place at the partonic level.

In actuality, it is as if two partons (quarks or gluons) collide. The parton

carries momentum, and the momentum fraction is defined as:

xi =
Pi

Pp

(1.13)

with Pp being the momentum of the proton and Pi the parton momentum.

Many of the physical quantities which we are seeking to determine depend

on this quantity.

• Intrinsic partonic transverse momentum: kT

This is the initial variable that interests us the most in this analysis. The

parton has intrinsic transverse momentum (perpendicular to the beam

momentum) kT which may or may not be in part correlated with spin

direction.

• Partonic spin direction.

Up or down for quarks. Up, down or zero for gluons. For this initial

variable we know the spin of the proton (or at least the polarization, see

below) and we try to correlate spin of the various flavors of quarks and of

the gluons to the spin of the proton. Note that for longitudinally polarized

protons, i.e. polarized in the direction of momentum, the nomenclature

for spin is replaced by that for helicity.
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• Helicity.

Although it has general usage, it is used essentially in this dissertation

instead of spin direction (partonic or protonic) for longitudinally polarized

particles. Helicity is defined as:

H =
~σ · ~p
|~p|

= ± h̄
2

(1.14)

the last equation is valid for spin 1
2

particles. The particle is said to posess

positive or negative helicity. Moreover, two colliding beams which have

the same helicity are said to have parallel helicity, and colliding beams

that have opposite helicities are said to have anti-parallel helicity.

• Polarization.

This is a measure of the spin orientation of a beam in a given direction.

Basic quantum mechanics tells us that the spin of a spin 1
2

particle mea-

sured in a given direction will be one of two possible outcomes: ± h̄
2
, or

more simply, either in the positive or in the negative direction of the axis

along which the spin is being measured. As the chance for an individual

particle to be measured in either the positive or negative direction is 50%,

for a large number of such particles, the outcome will be 50% in the posi-

tive direction and 50% in the negative. A beam is polarized if there exists

an imbalance in the number of spin-up (+) versus spin-down (-) particles

where the spin may be projected onto any direction, be it longitudinal,

transverse, or other. The formula for polarization is:

P =
N+ −N−
N+ +N−

(1.15)

Thus, polarization of 100% means all spin-up (or spin-down), and a po-

larization of 0% means half up and half down.

• Impact parameter.
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The distance b between the center of mass of the two colliding protons in

the transverse plane.

• Angle β between the centers of mass of the two protons projected into the

transverse plane as measured from the x-axis, i.e. the relative orientation

of the protons at the time of collision.

• Angle κ of the ~kTpair due to the sum of the two partonic ~kT , also measured

from the x-axis in the transverse plane.

• The angle ζ of the outgoing partons and jets in the transverse plane as

measured from the x-axis. This is not strictly speaking an initial state

variable, neither is it a final state variable. Moreover, it is a theoretical

quantity which exists only in the absence of kT .

Three of the last parameters; b, β, κ (see Fig. 1.5) have so far proven difficult

to characterize, although theoretical modeling attempts are currently under-

way. Knowledge of these three parameters would vastly improve the quality

of analyses such as ours; it is more likely, however, that in the near future

these analyses will contribute to a better understanding of these parameters

rather than the other way around. The final parameter is closely related to

the azimuthal angular position of detected particles. In and of itself, it is not

particularly useful. If there are correlations to be found for spin physics they

are most likely to be functions of κ− ζ.

2. Final state variables include: total momentum, energy, charge, and location of

the detected particles as well as some not quite so obvious ones such as:

• Transverse Momentum: pT

While the concept of momentum in the transverse direction is a fairly

straightforward one, it isn’t necessarily a concept that is à priori impor-

tant enough to warrant discussion. It is important for the simple reason
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x

y

Tpairk

b

β

κ

ζ

jet 1

jet 2

Figure 1.5: This diagram shows the collision of two protons in the transverse plane.
The black dot represents the collision point. The parameters b, β, κ, and ζ are
shown. All three angles are measured from the x-axis. ζ is the theoretical angle of
the kT -free jet-jet direction. Note that the ~kTpair vector is not drawn to scale in order
to space out the elements in the diagram.

that although much energy goes into each collision, conservation of mo-

mentum tells us that the net momentum is zero and that the momentum

of each proton is along the beam axis (in the plus z-direction and minus

z-direction, respectively) before collision. Traditionally (without consider-

ing kT ), any momentum in the transverse plane comes from the interaction

in the collision itself, from a transfer of longitudinal momentum pz to pT .

Regardless of the origin, any pT gained must be matched by an equal and

opposite pT carried away by some other particle(s). The amount of pz
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transfered to pT is characterized by xT :

xT =
2pT√
s

(1.16)

• Rapidity

The definition of the rapidity y of a particle is given by:

y =
1

2
ln

(
E + pz

E − pz

)
(1.17)

A nearly identically equivalent quantity, pseudo-rapidity, is related to the

polar angle θ, and is more easily measured experimentally:

η = − ln

(
tan

(
θ

2

))
(1.18)

There are certain general correlations between initial and final state variables that

exist that are good to be aware of. In particular, there is a correlation between mo-

mentum fraction of a parton and the rapidity and pT of the detected hadron. Though

not necessarily true for a particular collision, statistically speaking, the greater the

momentum fraction, the more boost the parton and its decays will most likely have.

Forward rapidity hadrons (closer to the beam axis) generally come from partons with

higher momentum fraction as opposed to central rapidity hadrons (perpendicular to

the beam axis), for particles with the same pT .

The relation between kT and pT is even more complex and generalizations cannot

be made. Most of the detected particle’s pT comes from the strength of the interaction

and momentum transfer xT and is only slightly modified by kT .
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1.5 Experiments with Protons

1.5.1 Proton Probes

In order to study the proton and its constituents we must probe the proton. There

are essentially two kinds of probes used on protons:

1. Lepton scattering off of protons (Fig. 1.6). This type of probe is relatively

simple as the intial and final state lepton variables are easier to connect. The

problem is that the leptons do not interact strongly, to first order, but only

electromagnetically (and weakly). This helps for a cleaner picture of the charge

structure of the proton, but does nothing for our understanding of the gluon

distribution, except by elimination.

2. Protons scattering off of protons (Fig. 1.7). Here we are able to probe the

protons strongly. The difficulty arises from the fact that:

• The strong interaction can take place between any partonic combination:

quark-quark, quark-gluon, or gluon-gluon.

• We are unable to turn off the electroweak interaction, so we do not get

a clean strong picture of the proton. In particular some effects are due

to the interference between strong and electromagnetic interactions (see

Appendix A).

• Our probe is itself a fiendishly complicated object instead of being point-

like. The extraction of intial state variables becomes more involved and

delicate.

18



Chapter 1. Introduction

γ

p

µe/

EM Deep Inelastic Scattering

Figure 1.6: Electromagnetic probe. To probe the electromagnetic structure of the
proton, leptons are used. In this diagram red denotes a negative charge, blue a
positive charge, and black a chargeless particle.

1.5.2 From Structure Functions to PDFs

Using the electromagnetic type of probe described above, many Deep Inelastic

Scattering (DIS) experiments measured the nucleon structure during the 1970’s and

1980’s. By measuring the angular distribution of leptons, the charged structure of

the proton was calculated in a manner similar to that used by Rutherford in his

famous experiment.

The scattering cross-section of electrons off of quarks is the relativistic version of
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)rg (b

p

p

Strong Deep Inelastic Scattering

Figure 1.7: Strong probe. To gain access to gluon information, a strong probe
(hadron) which is itself composite must be used. The red, blue, and light green
colors represent the colors of the quarks. The colors of gluons, represented here by
black springs, are not so easily represented visually. In the case of the quark-gluon
vertex, the gluon changes the color of the quark from blue to red and so must be br̄.
It may only interact with a red quark or a gluon directly.

Rutherford’s formula, which is given by:

dσ

dq2dν
=

πα2

2k2 sin4
(

θ
2

) 1

kk′

(
e2i cos2

(
θ

2

)
+ e2i

q2

2m2
i

sin2

(
θ

2

))
δ

(
ν − q2

2m2
i

)
(1.19)

where: q2 is the momentum transfered, ν is the energy transfered, ei the fractional

charge of the quarks and mi the mass fraction of the quark given as the fraction of

the proton mass M relative to the ratio of the quark momentum to the proton’s
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momentum:

mi = xM (1.20)

The delta function insures conservation of energy. The original Rutherford’s

formula in sin−4(θ/2) is modified by two terms, which can be identified as the electric

and magnetic components of the interaction. We have:


W i

1 = e2i
q2

4M2x2 δ
(
ν − q2

2m2
i

)
W i

2 = e2i δ
(
ν − q2

2m2
i

) (1.21)

where W i
1 and W i

2 are the magnetic and electric contributions to the interaction

due to quark flavor i, respectively. It is important to note that these functions are

now x dependent. By summing up over the different flavors and multiplying by the

flavor probability distributions, the electric structure function is obtained:

νW2 =
∑

i

e2i fi(x) = F2(x) (1.22)

the flavor probability distributions fi(x) are called Parton Distributions Functions

(PDFs). They are given as a function of x and are plotted by fitting data to theory

and different models, as with Fragmentations Functions (Section 1.3). They give no

indication of spatial distribution. Several groups (CTEQ, MRST) have constructed

slightly different versions of PDFs (see Fig. 1.8). By integrating over the x-range,

the total partonic contribution to the proton’s momentum can be calculated. The

main result is that the momentum contribution from quarks (and anti-quarks) is

only about 50% of the proton’s total momentum [5], although this value varies as a

function of the center of mass energy.

By using the strong probe and changing the scattering cross-section in Eq. (1.19)

to reflect the strong force, the PDFs for gluons were established confirming that they
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Figure 1.8: Parton Distribution Functions. The different colors are for different
flavors of partons: black for gluon, green for up, red for down, blue for anti-up. The
y-axis shows the product xfq(x) and these products are plotted as as a function of
x on a log scale.

too carry about 50% of the proton’s momentum [5]. In terms of distributions, gluons

are more prominent at low x, while quarks are more prominent at higher x.

1.5.3 The EMC Result

In 1988 the European Muon Collaboration (EMC) [6, 7], spurred perhaps by the

fact that the sum of the momenta from the different quark flavors only adds up to

50% of the proton’s momentum, set out to measure the quarks’ spin contribution to

the proton’s spin. The EMC experiment was an EM probe type of experiment but
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with polarized muons scattering off of a polarized target. Eq. (1.19) was modified to

include the spin-spin interactions from which ∆fq(x) were obtained.

∆fq(x) refers to the difference in probability of finding a spin up quark from a

spin down quark in a polarized proton (in the up direction) for a given quark flavor

q and a certain momentum fraction x. Fig. 1.9 shows how integrating over all x the

difference in the PDFs for up polarized (f+
q (x)) and down polarized quarks (f−q (x))

gives the contribution of the specific quark to the spin of the proton.
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Figure 1.9: Spin-dependent Parton Distribution Functions and the contribution of
the spin of a specific quark to the overall proton spin.

The startling result from this experiment was that contrary to the previously held

näıve viewpoint that the proton’s spin was entirely due to the valence quarks’ spin,

the total contribution from all quarks, both valence and sea, was only on the order

of 27% of the total.
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This ”spin crisis” as it has been labeled has been at the center of many spin

programs and experiments.

The angular momentum sum rule, Eq. (1.23), nonetheless tells us that the pro-

ton’s spin is a simple sum of the quarks’ spin, the gluons’ spin and the orbital angular

momenta of the quarks and gluons.

Jz =
1

2
=

1

2
∆Σ + Lq + ∆G+ Lg (1.23)

Here 1
2

is the total spin of the proton, ∆Σ is the quarks’ spin contribution (both

valence and sea, u, d and s flavors), ∆G is the gluons’ spin contribution, while the

Lq and Lg are the orbital angular momenta of the quarks and gluons, respectively.

Recent measurements of the quark spin (∆Σ) [8, 9, 10, 11, 12, 13, 14] contri-

butions have confirmed the initial EMC results and shown them to be insufficient

to account for the proton’s spin. In addition, measurement of the strange quark

contribution ∆s has been measured to be small and negative. By assuming that all

light flavors (u, d and s) are created equally from the vacuum, the result shows a

small negative contribution from the sea quarks, and, by subtracting this result from

the 27% total contribution measured by the EMC colaboration; a larger, though

insufficient positive contribution from the valence quarks.

These Deep Inelastic Scattering (DIS) experiments can also make an indirect mea-

surement of the gluon spin contribution [15], although with very limited precision.

COMPASS and SMC [16] have recently shown results for ∆G from muon-nucleon in-

teractions. Statistically limited, PHENIX measurements of the gluon spin (∆G)[17]

are still more restrictive and seem to indicate a small contribution to the proton’s

spin due to gluon spin, while at the same time the possibility that the gluon spin

accounts for all the missing proton’s spin is still within the upper limit of the error

bars and so cannot be excluded. The COMPASS experiment at CERN has recently
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publicized their measurements for ∆G which are consistent with the PHENIX mea-

surements within all uncertainties. The current status of the spin-dependent Parton

Distribution Functions has recently been summarized for convenient reference [18].

Appendix B contains a more in depth look at the measurement of ∆G in general, as

well as a specific example of ALL measurement from open charm decay.

Currently almost nothing is known about the quark and gluon orbital angular

momenta, although asymmetries have been measured that are thought to stem from

orbital angular momentum (see Section 2.4) and many groups are designing and

implementing new experiments to measure Lq and/or Lg.

1.6 Dissertation Structure

This is a study of the angular correlations in jet-jet events resulting from longi-

tudinally polarized p+p collisions in order to measure the partonic orbital angular

momentum (POAM) contribution (Lq, Lg) to the proton’s spin. The study will sep-

arate events according to helicity states in order to examine the possibility of a

spin-related contribution to kT , which would correlate directly to POAM, using a

technique similar to a technique previously suggested by M. Ta-Chung et al. [19] in

the Drell-Yan channel. The layout of the dissertation is as follows:

• Motivating the dissertation (Chapter 2). A review of theoretical studies and ex-

perimental results concerning partonic orbital angular momentum and intrinsic

transverse momentum kT .

• A brief overview of the experimental setup (Chapter 3), including the RHIC

ring and the PHENIX detector, as well as polarimetry.

• Methodology (Chapter 4). The mechanics of jet-jet correlation studies are

discussed.
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• Analysis. (Chapter 5). The cuts and techniques used in the present analysis,

including a look at the π0 analysis.

• Analysis results (Chapter 6) from spin-sorted jet-jet angular correlations in

PHENIX run3pp.

• A simple PYTHIA Monte Carlo model (Chapter 7) of orbital angular momen-

tum in the proton in order to determine the sensitivity of our method to the

existence of POAM.

• A brief conclusion (Chapter 8). What have we learned? What are the future

plans for measuring orbital angular momentum? How might we improve our

measurements through greater statistics and better technique?

• A more in depth look at polarimetry (Appendix A) in the AGS and RHIC and

a proposal for an extracted beam CNI polarimeter in the AGS.

• An analysis (Appendix B) that attempts to calculate ∆G from run3 data using

semi-leptonic decay coincidence events from open charm production through

the gluon-gluon channel.

• We revisit the calculation of the π0 ALL measurement (Appendix C) for ex-

traction of ∆G to gain insight into how spin and orbital angular momentum

contributions can mutually influence each other’s measurements.
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Motivation

2.1 Introduction

The idea that there might be partonic orbital angular momentum (POAM) is not

new and there are four essential motivations:

1. According to S. Brodsky [20], the Dirac equation already shows that the ground

state of the proton holds s-wave (l = 0) and p-wave (l = 1) components. Al-

though this is not transparent in the standard form of the equation, it becomes

evident when written in the Light Front (LF) formalism where a l = 1 Fock

State appears.

2. Although the addition of Confinement to the näıve quark model invalidates the

calculation of the magnetic moment due simply to quark spin, it also requires

some partonic angular momentum to obtain the proton’s magnetic moment.

The minimal constraint and one partially favored by theorists is that there

would be little or no net POAM but that positively charged quarks (u and

d̄) would rotate in one direction, and negatively charged quarks would rotate
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in the other. This could still mean that
∑

q Lq = 0 but it does require some

orbital motion.

3. The detected presence of kT .

4. Single Spin Asymmetries (SSAs).

These last two items require a more in depth description and are discussed further

in Section 2.2 and Section 2.4.

2.2 Measured Existence of kT

The existence of orbital angular momentum would be compatible with another

minor mystery in experimental physics. When colliding particles at high energies,

some longitudinal momentum is converted into pT . The pT distribution in particle

production from this conversion has been calculated to be a power law at high-pT .

The experimental results measured at CERN-ISR [21] in 1972 for π0 production

show that this power law is not respected. The reason for the deviation from the

power law is kT smearing, a modification of the π0 pT due to kT that was not

initially understood. In this context kT is not necessarily intrinsic partonic transverse

momentum, but some net parton transverse momentum that could have as its origin

a number of causes. In this section alone we will use kT in its broader sense and use

the nomenclature ”intrinsic kT ” for the more specific kind.

The amount of kT has been measured [22, 23, 24] to be in the 2-3 GeV range for

center of mass energies of the same order of magnitude as those used used in our

analysis.

Fig. 2.1 illustrates the idea of kT . In the first panel two protons collide with

no kT , yet the two jets are not back-to-back in the lab frame. This is because the
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momentum fractions x1 and x2 of the partons are not à priori equal. However, the

acoplanarity exists only in the longitudinal direction. In the transverse plane the

jets are back-to-back in the lab frame. In the second panel the partons also carry

kT and are no longer back-to-back in the transverse plane. Note that we are never

implying that there is net transverse momentum. Momentum conservation always

applies, of course. If there is net kT , this means an equal and opposite amount of

transverse momentum is carried away by the remaining partons in the proton, also

called the beam remnant.

p

P1x

P2x

p

Longitudinal

Transverse

p

P1x

P2x

φ∆

p

Longitudinal

Transverse

Figure 2.1: Feynman Diagram of colliding protons in the longitudinal and transverse
planes. (left) Two protons collide with no kT , yet the two jets are not back-to-back
in the lab frame. This is because the momentum fractions x1 and x2 of the partons
are not à priori equal. However, the acoplanarity exists only in the longitudinal
direction. In the transverse plane the jets are back-to-back in the lab frame. (right)
The partons also carry kT and are no longer back-to-back in the transverse plane.

Several possibilities suggest themselves as the source of this kT :

1. Heisenberg’s Uncertainty principle. The parton wave functions are confined to
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a region of space, namely the proton, which means that according to:

∆x ·∆px ≥
h̄

2
(2.1)

the partons must have a random kT . However, the amount calculated due to

this Heisenberg Uncertainty effect is on the order of 200-300 MeV , an order of

magnitude smaller than the observed kT .

2. Soft gluon radiation. Initial or final state radiating gluons akin to Brems-

strahlung carry momentum from the parton and give it an equal and opposite

transverse momentum kick.

3. NLO radiative corrections in hard scattering processes. This possibility is

illustrated in Fig. 2.2. In the upper panel two protons collide and a cc̄ quark

pair is produced from gluon fusion. In the absence of other sources of transverse

momentum, the gluon pair has no net transverse momentum, as a result neither

does the cc̄ pair nor the resulting J/ψ. In the second panel a next-to leading

order (NLO) process is considered in which a gluon carries momentum away

from the cc̄ pair. The net transverse momentum of the pair, and that of the

resulting J/ψ is now equal and opposite to that of the gluon. The value of the

J/ψ transverse momentum has been measured [25] to be:

〈pT 〉J/ψ = (1.8± 0.23± 0.16)GeV/c (2.2)

Note that this measurement did not measure J/ψ and jets, merely J/ψs. To

better measure the described effect, i.e. a gluon creating J/ψ kT by carrying

away transverse momentum, a comparison between J/ψ with and J/ψ without

an accompanying jet should be made.

4. POAM. The basis of our analysis is that we consider the possibility that some

of the kT may be spin-correlated, i.e. due to orbital angular momentum of the

partons in the proton.
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 productionψLO J/
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ψJ/
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Figure 2.2: J/ψ transverse momentum from NLO diagrams. (top) The gluon pair
has no net transverse momentum, as a result neither does the cc̄ pair nor the resulting
J/ψ. (bottom) A gluon carries momentum away from the cc̄ pair. The net transverse
momentum of the pair, and that of the resulting J/ψ is now equal and opposite to
that of the gluon.
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2.3 Measurement of POAM

In the late 1990’s, Ji [26] proposed an experimental tool to measure the quark orbital

angular momentum, and since that time, experiments at DESY and Jefferson Lab

have pursued this course [27]. The method uses deeply virtual Compton scattering

(DVCS); i.e. a virtual photon emitted by a lepton probe, absorbed by a quark, which

is excited and which in turn emits a real photon. The detection of the real photon

offers insight into off-forward parton distributions (OFPDs) a new kind of PDF akin

to the generalized parton distributions (GPDs) described in Section 2.5, which in

turn could lead to information on quark orbital angular momentum.

The basic picture for our analysis, developed by D.E. Fields [28], is that if the

kT of partons is correlated to the (longitudinal) spin direction, as it would be in the

case of orbital angular momentum, then hard collisions involving these rotating par-

tons may lead to jets with more (or less) average transverse momentum depending

upon the relative orientation of the spin directions and the centrality of the collision

(see Fig. 2.3). Since, at present, there is no good experimental tool to determine

the collision centrality in p+p collisions, one must determine if a net
√
〈k2

T 〉 differ-

ence between parallel and anti-parallel helicity events remains even when the impact

parameter is undetermined. Note that in our analysis, since we are colliding longitu-

dinally polarized protons, we can only measure
√
〈k2

T 〉 and not ~kT , as we have no way

of determining the relative orientations of the protons and distinguishing rotation

direction.

In a previous work [19], with a rather simple picture of the transverse spatial and

momentum distributions, it was found that by integrating over the entire range of

impact parameter, a net overall difference is still found. We also present in Chapter 7

a simple Monte Carlo to model this effect and to then determine if our method of

measuring the average kT is sufficiently sensitive to detect such an effect.

32



Chapter 2. Motivation

Blue Ring Yellow Ring

parallel helicities

Blue Ring Yellow Ring

anti-parallel helicities

Blue Ring Yellow Ring
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Blue Ring Yellow Ring

anti-parallel helicities

Figure 2.3: Comparing different impact parameter collisions of longitudinally po-
larized protons. For parallel helicities the kT of the rotating partons (blue and red

arrows) add for peripheral collisions and give a large net ~kTpair (black arrow) to the
created jet pair. For central collisions in the same helicity combination, the kT from
POAM of the partons cancel to a great degree, leaving the center of mass system
with little ~kTpair. For anti-parallel helicities the opposite effect is seen, i.e. peripheral

collisions give a small ~kTpair due to POAM, while central collisions give a larger ~kTpair.
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2.4 Single Spin Asymmetries

Collisions involving transversely polarized protons have been shown to have Single

Spin Asymmetries (SSAs), meaning an imbalance between scattering to the left or

right [29, 30]. By summing over both polarizations in one beam, data is obtained

for an unpolarized beam colliding with transversely polarized protons. The results

show left-right asymmetries (Fig. 2.4) in particle production which have been at the

center of much interpretative debate, including the possibility of attributing such

asymmetries to partonic orbital angular momentum.

Single Spin Asymmetry

bP

yP

Figure 2.4: Single Spin Transverse Asymmetry. A left-right asymmetry in particle
production is observed between colliding protons, one proton is unpolarized (red)
and the other (blue) is transversely polarized.
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2.4.1 Sivers Effect

The first suggestion and one of the most popular explanations for SSAs is the

Sivers Effect [31, 32], first suggested by D. Sivers to explain large SSAs at FNAL

[30] and RHIC [33]. The näıve inerpretation of the Sivers effect is shown in Fig. 2.5.

A solid object colliding with another solid object has more chance of being deflected

to the right than the left. At first glance this simple model is not accurate, even to

explain the Sivers effect. Protons are not solid objects and a partonic collision is as

likely to occur on the far side of the ”rotating” proton and give a kT boost in the

left direction. However, according to D. Sivers [34] an effect is nevertheless expected,

and this model does actually give a reasonable interpretation of that effect. There is

a final state interaction due to the absorber (non-rotating) component of the proton,

which modifies the wave function of the proton depending on which particular process

is involved, ”hiding” a part of the proton to a certain extent (in this case the back).

The key here is process dependence. Asymmetries will be measured but will depend

on the type of process encountered. In particular, an opposite asymmetry to the

one measured at E704 would be measured for Drell-Yan production which has no

final state interaction, as opposed to the hard scattering processes where final state

interactions but no initial state interactions occur.

A lengthier discussion of the Drell-Yan Sivers Effect is given in Section 8.2.2.

The Sivers Effect requires POAM; however, measuring SSAs does not necessarily

imply the existence of the Sivers Effect. Other explanations for SSAs include the

Collins Effect, discussed next.
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Sivers Effect

top view

bP

blue x shift

yP

red x shift

Figure 2.5: The Sivers Effect. A left-right asymmetry is expected because of spin-
oriented kT , orbital angular momentum, in processes with no initial state interaction.
POAM also would create Doppler shifts in the momentum fraction of the colliding
partons.

2.4.2 Collins Effect

Another possible explanation for SSAs is the Collins effect [35]. This effect says

that the Fragmentation Functions depend on the spin of the partons (see Fig. 2.6),

and if there is partonic spin contribution to the proton’s spin, which there is (even

though it does not account for all the proton spin) then an asymmetry will arise.

As previously mentioned, a Fragmentation Function (FF) is a description of the

way a parton fragments into hadrons. During fragmentation a finite amount of trans-
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verse momentum is imparted to the hadron, called jT . In the absence of pre-existing

conditions, on average, the angular deviation of the hadrons with respect to the

original partonic momentum direction is symmetric around zero. In a spin-oriented

proton, however, the partons, and in particular the valence quarks have a higher

probability of having a definite spin orientation, and the resulting Fragmentation

Functions are affected accordingly.

The Collins effect is believed to be important only for quark-quark interactions

which occur with greater frequency at higher pT , and in particular for valence quark

interactions which generally carry a higher momentum fraction and therefore gener-

ally have decay products in high rapidity regions. Nevertheless it will be important

to distinguish jT , or fragmentation, effects from kT effects in any experimental mea-

surements.

2.4.3 Twist-3 Effects

Another explanation for the SSAs suggests a contribution from a higher order

(Twist-3) Feynman Diagram. According to calculations by F. Yuan and W. Vogel-

sang [36] these contributions may exist, but would only contribute at much higher

pT (pT > 10GeV/c ); the more likely effect at lower pT being the Sivers Effect.
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Collins Effect

top view

proton c.o.m. frame
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bp
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Figure 2.6: The Collins Effect. This schematic diagram shows the collision of two
partons, one green, one blue transversely polarized; then follows the evolution of the
blue scattered parton through hadronization in the blue polarized proton center of
mass frame. For clarity, the partons are no longer point-like, and the momentum
vectors do not extend into the drawn partons. (left) the partons collide (x̂i represents

xi
~Pi), the dotted parton represents a spin-up parton. (right) in the proton’s center

of mass frame, the polarized parton collides at a. At b. the scattered polarized
proton still has mostly forward momentum but has less velocity than the rest of the
moving proton. It reaches the limit of confinement and hadronizes to c. During
hadronization, because of its spin, the parton will aquire jT that is more likely to be
oriented and will impart an equal and opposite transverse momentum to the proton
remnant.
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2.5 Generalized PDFs

Parton Distribution Functions (PDFs), described in Section 1.5.2, characterize the

distributions of partons within the proton. Note that even though only up and down

quarks exist as valence quarks in the proton, any flavor - anti-flavor qq̄ pair may exist

within the proton as sea quarks. PDFs are given as a function of x, the momentum

fraction, Eq. (1.13). More recently, in order to better understand the inner workings

of the proton, attempts have been made to expand the PDFs to include variables

such as: b (the impact parameter), kT , and the transfer of longitudinal and transverse

momenta. These are called Generalized Parton Distributions (GPDs) and Transverse

Momentum Dependant parton distributions (TMDs).

Another attempt to generalize PDFs, the Off-Forward Parton Distributions (OF-

PDs) [37, 38] has been mentionned in Section 2.3.

It is clear that the results from SSA studies are part of the same general study as

this analysis and others which seek to extract POAM from the collisions of polarized

protons, and all results will need to fit a single set of distribution functions, be they

GPDs or other, as well as a unified result for orbital angular momentum. It seems

that we are not there yet, and more results will need to follow before we can obtain

a clear picture of the proton’s structure and spin.

Further complicating matters is the emerging awareness of the interdependence

of all such measurements. Appendix C is one such example, as is the illustration in

Fig. 2.5 of the way the momentum fraction x is modified by Doppler-shifting due to

POAM. This can only make extraction of individual components of the proton spin

puzzle more difficult.
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2.6 The 2-Dimensional kT View

As opposed to the case for longitudinally polarized protons, it is possible to measure

the direction of kT in transversely polarized protons, and the results from E704 [30]

seem to indicate a net measured ~kT for positive charges (u, d̄, s̄) and an opposite net

measured ~kT for negative charges (d, s, ū). The calculated values are nearly equal

and could meet the minimum angular momentum requirement for magnetic moment,

i.e. no net angular momentum. As previously seen, GPDs are a function of kT , the

magnitude of ~kT , and much theoretical and experimental data is presented in terms

of kT . The problem is that it is not very consistent with reality. While it is certainly

possible for there to be net
√
〈k2

T 〉, it is theoretically impossible for there to be

any net ~kT or any net charge ~kT , or any net flavor ~kT , indeed any kind of net ~kT ,

otherwise that charge or flavor or parton would migrate out of the proton. Therefore

the measured ~kT cannot be the whole picture. This is illustrated in Fig. 2.7 (a). Two

points can be made concerning these results, as mentioned by D. Sivers [34] and M.

Anselmino [39], respectively.

1. The measured kT must be process dependant and is measured only because

part of the proton is shielded by the particular type of interaction and process

at work.

2. ~k+
T +~k−T = 0 does not necessarily imply ~L+ + ~L− = 0, because ~kT does not give

us information on the radial distribution.

In fact these measurements make sense in the context of the Sivers Effect which

results from an effective screening of the ”back” half of the proton. This is illustrated

in Fig. 2.7 (c).
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c. top view
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Figure 2.7: The 2-dimensional view of ~kT . Figure (a) shows random ~kT and an

overall global ~kT . Figure (b) shows net ~kT of negative charge in one direction and

net positive ~kT in the other. The two are equal and opposite. Figure (c) illustrates

the ”hidden” ~kT and the fact that no net ~kT does not necessarily imply no net POAM.

2.7 Predicting POAM

The reluctance to discuss POAM comes from the difficulty of calculating analyzing

powers or any asymmetries from cross-sections in pQCD taking kT into account.

The fundamental principle that allows calculations for the cross-sections, is colinear

factorization. The cross-section for p+ p→ X is proportionnal to:

< ψfinal|Mij|ψinitial >
2 (2.3)
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where the matrix element Mij is equal to the product of the PDFs, the cross-

section for particular contributing partonic processes, and the Fragmentation Func-

tions(FFs):

Mij = fq(x) · σ̂ab→cY ·Dc
X(z) (2.4)

This is possible because for a colinear collision the three factors are independant

of each other. Introducing kT breaks that colinearity, introduces dependencies, and

renders calculations extremely difficult.

In an attempt to provide a different explanation for a possible a azimuthal angle

asymmetry from longitudinally polarized protons, as our analysis sets out to measure,

W. Vogelsang postulated [40] a width difference for quarks and gluons from spin down

to the spin up configuration, which resulted in such an effect. The magnitude of such

an effect is small, however, ≈ 10MeV and highly unlikely to affect our measurement.

The point of this calculation was to show that a difference in kT between par-

allel and anti-parallel helicity events in longitudinally polarized p+p would be due

to POAM to first order, and that other possible sources of asymmetry would be

relatively minor.
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Experimental Facility

In order to effectuate polarized p+p collisions, a technical difficulty must be over-

come: namely, the acceleration of polarized protons. The Relativistic Heavy Ion

Collider (RHIC) was built with such an operation in mind. A look at the experi-

mental facility where we propose to measure POAM is then warranted. We will take

a brief look at:

1. the RHIC facility.

2. How polarization is maintained and measured at RHIC.

3. the PHENIX detector, where the data is taken.

3.1 RHIC

The Relativistic Heavy Ion Collider (RHIC) located at Brookhaven National Labo-

ratory (BNL) on Long Island, New York, is a versatile machine capable of accelerating

a wide range of ions to an energy of 200 GeV per nucleon as well as protons up to
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an energy of 250 GeV . For the 2003 polarized proton run (Run3pp), the energy per

proton was 100 GeV , resulting in a center of mass energy of
√
s = 200 GeV . RHIC

is a 2.6 mile circumference ring of two separate beam pipes, labeled as blue and

yellow, each carrying heavy ions or protons, that can intersect at six different loca-

tions on the ring. Each intersection point is potentially the location of experimental

apparatus. For Run3pp, only four were in use:

• STAR: located at six o’clock on the ring seen from the air, where twelve o’clock

is the northern direction.

• PHOBOS: located at the ten o’clock position.

• BRAHMS and pp2pp share use at the two o’clock position

• PHENIX: at the eight o’clock intersection point.

RHIC is actually only the last and largest accelerator in the chain that exists at

BNL. Both of its beam pipes, yellow (clockwise) and blue (anti-clockwise) are fed

by the Alternating Gradient Synchrotron (AGS), another accelerator ring, via the

AGS to RHIC (ATR) line. The AGS itself receives the ions from the Booster ring,

which in turn obtains either protons from the linear accelerator (LINAC) or heavy

ions from the tandem van de Graaf accelerator (Fig. 3.1).

The protons are ionized Hydrogen atoms accelerated from the optically pumped

polarized ion source (OPPIS)[41, 42]. This polarized H− source produces 500 µA in

a single 300 µs pulse, which corresponds to 9 · 1011 polarized H−. This is sufficient

intensity to eliminate the need for accumulation in the Booster. The polarized H−

ions are accelerated to 200 MeV with the LINAC with an efficiency of about 50%.

The pulse of H− ions is strip-injected and captured into a single bunch in the AGS

Booster. The bunch in the Booster will then contain about NB = 4 · 1011 polarized

protons with a normalized emittance of about εN = 10π mm-mrad. The single bunch
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Figure 3.1: Location of experiments at RHIC

of polarized protons is accelerated in the Booster to 1.5 GeV and then transferred

to the AGS, where it is accelerated to 24 GeV . From 6 to 110 bunches are injected

into the RHIC, where the protons are again accelerated, this time to 100 GeV , and

where each bunch can hold up to 109 ions, thetime between crossings for 56 bunches

(the maximum used for Run3pp) being 212 ns.

The fundamental improvement in this set-up over previous accelerator facilities

has been the ability to polarize, and more importantly, to maintain the polarization

of the protons through the various accelerations. Without this ability there would

be no spin physics program, and proton collisions at RHIC would merely serve as a

baseline for heavy ion experiments. As such, a brief description of the technology
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and hardware relative to polarization is merited.

3.2 Polarized Proton Acceleration and Mesure-

ment

3.2.1 Polarized Proton Acceleration

To achieve high energy polarized proton collisions, polarized beams first have

to be accelerated, which requires an understanding of the evolution of spin during

acceleration and the tools to control it. Maintaining polarization during acceleration

in the different rings is done with the aid of devices known as Siberian Snakes [43].

The depolarization occurs to first order because of Thomas precession and the non-

homogeneity of the various magnetic fields which causes slightly different precession

rates. The Snakes which are local 180◦ spin rotators compensate for the precessional

differences.

Each Siberian Snake consists of a set of four superconducting helical dipole mag-

nets. The magnets are capable of producing a central field of up to 4 T which spirals

through 360◦ over a length of approximately 2.4 m. Four such magnets, each in-

dependently powered, can generate a spin rotation from vertically up (the nominal

stable spin direction for the synchrotron) to vertically down, with no net excursions

of the particle trajectory. By doing so every rotation, the Thomas precession from

the vertically down cycle around the ring compensates the precession from a ring

cycle with spin up and in so doing maintains polarization of the beam.

Technical difficulties also arise during transfer from one ring to the next, partic-

ularly when in the AtR because the plane of the AGS is not the same as the RHIC

plane, so the beams must be bent and rotated to descend the slope to RHIC along
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the ATR, then bent and rotated back to the horizontal plane once in RHIC.

Once in RHIC, Spin Rotators are located at the entrance and exit of each exper-

iment. They are used when longitudinally colliding protons are desired. The Spin

Rotator is similarly constructed to the Siberian Snake; by altering the ”handedness”

of two of the helical magnets, and using slightly different fields, the spin can be made

to rotate from the vertical to the longitudinal direction through the intersection, then

rotated back to the vertically polarized position when exiting the intersection region

(IR).

3.2.2 Polarimetry

In order to maintain good polarization, a system of measuring polarization, known

as polarimetry must be in place. Polarization is measured at each step, before the

Booster, in the AGS, and in RHIC. A more in depth study of polarimetry in the

AGS and RHIC for Run3pp as well as a proposal for the measure of polarization in

the AGS and RHIC is discussed in Appendix A.

The essence of polarimetry is to set up fixed target experiments to sample the

beam in the different rings and to measure an asymmetry (Ax) which is then com-

pared to a known physics asymmetry, called the Analyzing Power (ax). The asym-

metry can be of several types, the most common being:

• A directional (left-right) asymmetry as mentionned in Section 2.4.

• A cross-sectional, or number, asymmetry between different helicity configura-

tions like those used in Appendix A and Appendix B.

The comparison of Analyzing Power to measured asymmetry gives the polariza-
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tion P :

Ax = P · ax (3.1)

The polarization in the AGS is measured by means of a p+C Coulomb-Nuclear

Interference (CNI) polarimeter. This means that the asymmetry comes from an

interference term in the electromagnetic and nuclear forces. The x in Eq. (3.1) refers

to the process, which in this case is p+C elastic scattering.

The polarized proton beams are delivered to the various experiments, including

PHENIX, the experiment of interest. Polarization is measured locally at PHENIX

and is checked versus the polarization measured at twelve o’clock in the RHIC ring.

It is interesting to note that the local polarimeter in PHENIX uses an analyzing

power that was previously unknown: a forward neutron asymmetry. By measuring

the neutrons produced in transversely polarized p+p collisions, an asymmetry was

observed, and by mapping that asymmetry, a range of Analyzing Power was ob-

tained to use for local polarimetry. For Run3pp, since we are colliding longitudinally

polarized protons, the local polarimeter analysis serves to check that the polarized

beam has been properly rotated. We next take a closer look at the entire PHENIX

detector including local polarimetry.

3.3 The PHENIX Detector

3.3.1 Overview of PHENIX

The PHENIX experiment [44] is one of the two (with STAR) large experiments at

RHIC. It is an experiment with over 500 collaborators from 26 different countries.

PHENIX is a heterogeneous experiment, put together by several different groups
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having different physics motivations. As such it has a large number of sub-detectors,

which can be divided into three main categories, consisting of four spectrometer arms

- two around mid-rapidity (the central arms) and two at forward rapidity (the muon

arms) - and a set of global detectors:

The layout of the PHENIX experiment during Run3pp is shown in Fig. 3.2.

3.3.2 Global Detectors

The global detectors are concerned with vertex resolution, minimum bias triggering

and polarimetry. Three global detectors are employed [45]. They consist of:

• Zero-Degree Calorimeters (ZDC)

• Beam-Beam Counters (BBC)

• Normalization Trigger Counter (NTC)

As indicated by their name, ZDCs are located at zero degrees along the beam

axis behind the intersection where the outgoing beam is diverted into the particular

yellow or blue beampipe. The ZDCs are calorimeters which detect neutral particles

(essentially neutrons and photons, because all forward charged particles are swept

away by the bending magnets). While extremely useful for Au+Au collisions which

have many spectator neutrons for purposes of determining centrality, the ZDCs pro-

vide little useful information for p+p collisions. The ZDCs have been outfitted with a

shower max detector (SMD) for measuring transverse polarization (see Section 3.3.5).

A pair of BBCs detect passing charged particles which provides level 1 triggering

of vertex collisions and is essential in determining the vertex position along the

beam axis. The technology employed for this role is a one-inch mesh dynode photo-

multiplier tube mounted on a 3 cm quartz radiator. An array of 64 such channels
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are located on either side of the collision point along the beam axis. They cover

the full azimuth at a pseudorapidity range of 3.0 to 3.9 in both directions. The

vertex position is determined by the timing difference of signals for the north and

south beam-beam counters with a resolution of 50 ps. This corresponds to a vertex

resolution along the beam axis of about 2 cm.

The NTC extends the coverage of the BBC for p+p and d+Au running, assisting

the BBC primarily in the level 1 triggering.

3.3.3 Central Arms

The central arm detectors [46] are located in two arms: East and West in the

mid-rapidity range, and are concerned primarily with electron, photon and hadron

detection. Each central arm covers the pseudorapidity range |η| < 0.35 and 90 ◦

in azimuthal angle. The azimuthal distance between the arms is π/4 on the top,

but 3π/4 on the bottom. The magnetic field [47] for the central spectrometer is

axially symmetric around the beam axis. Its component parallel to the beam axis

has an approximately Gaussian dependence on the radial distance from the beam

axis, dropping from 0.48 T at the center to 0.096 T (0.048 T) at the inner (outer)

radius of the DC. The detectors used in Run3pp are:

• The electromagnetic calorimeter (EMCal) which is the outermost subsystem

on the central arms and provides measurements of both photons and energetic

electrons. A lead-scintillator (PbSc) calorimeter is used for good timing and a

lead-glass (PbGl) calorimeter gives good energy resolution. They are located

in mutually exclusive φ− θ coverage. Most analyses use information from both

types.
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Figure 3.2: The PHENIX experimental layout for Run3pp. The top panel shows the
PHENIX central arm spectrometers viewed along the beam axis. The bottom panel
shows a side view of the PHENIX muon arm spectrometers and the position of the
global detectors (BBC and ZDC).
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• The tracking system uses two or three sets of Pad Chambers (PC), depend-

ing on the arm, to provide precise three-dimensional space points needed for

pattern recognization (PC1, PC2, PC3 located at 2.4m, 4.2m, 5m in radial

direction, respectively).

• The precise projective tracking of the Drift Chambers (DC) is the basis of the

excellent momentum resolution.

• A Time Expansion Chamber (TEC) in the east arm provides additional track-

ing and particle identification.

• The Time-of-Flight (TOF) [48] provides particle identification for hadrons. The

85 ps timing resolution of the TOF allows separation of kaons from pions up

to 2.5 GeV/c and proton identification out to 5 GeV/c .

• The Ring-Imaging Cherenkov (RICH) detectors detect charged particles hav-

ing high momentum, which in combination with the EMCal provides elec-

tron/photon discrimination.

The central arms consist of tracking systems for charged particles as well as elec-

tromagnetic calorimetry. The calorimetry combined with an electron veto provided

by the RICH counter is used for photon identification, and by extension through

photon-photon invariant mass plots, for π0 identification, one of the prime objectives

of PHENIX, to be used in π0 asymmetry measurements for extraction of ∆G.

3.3.4 The Muon Arms

The Muon Arms [49, 50, 51, 52], shown in Fig. 3.2, are located in the forward

rapidity regions, −1.1 > η > −2.2 and 1.2 < η < 2.4, with full azimuthal coverage.

Each arm, North and South, has two main components, a muon identifier and a

muon tracker.
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Detector ∆η ∆φ Function

BBC ±(3.1 to 3.9) 2π event char., vertex resolution

NTC ±(1 to 2) 2π minbias trigger for pp

ZDC/SMD - 2π vertex resolution, local polarimetry

DC ±0.35 π
2
· 2 momentum and mass resolution

PC ±0.35 π
2
· 2 tracking

TEC ±0.35 π
2

pattern recognition, dE
dx

RICH ±0.35 π
2
· 2 electron ID

TOF (0 - 0.35) π
4

hadron ID

EMCal ±0.35 π
2
· 2 photon and electron detection

MuTr North (1.2 to 2.4) 2π tracking, momentum

MuTr South -(1.2 to 2.2) 2π tracking, momentum

MuID North (1.2 to 2.4) 2π muon ID

MuID South -(1.2 to 2.2) 2π muon ID

Table 3.1: PHENIX detector summary
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• The muon identifier is composed of 5 layers of transversely-oriented plastic

proportional tubes (Iarocci tubes) interleaved with steel absorbers, providing

a coarse x− y track position while providing excellent hadron rejection.

• The muon tracker consists of three stations of 2 or 3 tracking chambers inside a

radial magnetic field. Each chamber is a gap containing ionizing gas and broken

up by charged anode wires that span an approximate arc in the stations that

corresponds to an eighth (a half-octant) of the circumference of the detector.

The charged particles traversing the muon tracker ionize the gas which then

deposits a charge on the anode wires. Each gap is bordered by a pair of readout

planes, which are segmented approximately radially by cathode strips, at angles

that differ by -11.5 ◦, +11.5 ◦and 0 ◦from the radial direction. The image

charges created on the cathode strips are read out and the track location is

pinpointed by stereoscopic projection. Voltage is supplied to groups of (usually)

16 wires, for a total 6 or 8 HV anode cards per octant per gap per station per

arm.

Each muon spectrometer has a large geometric acceptance of about one steradian

and excellent momentum resolution (2%) and muon identification. The PHENIX

Muon Arms provide a means of studying vector meson production, the Drell-Yan

process (via the detection of muon pairs) and heavy quark production. Z and W

production will be studied at forward rapidities (via the detection of single high pT

muons) at higher center of mass energies.

The Muon Arm Tracker design specifications [49] were driven by the requirements

that it be able to:

• allow a clean separation of J/ψ from ψ′, Υ(1S) from Υ (2S,3S) and ρ/ω from

φ.
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• provide a large enough signal-to-background and acceptance for vector mesons

to be able to do statistically significant physics measurements in less than 1

year of RHIC running.

• have low enough occupancy to be able to reconstruct tracks efficiently in central

Au+Au events.

• perform well in the lower occupancy but higher event rate p+p and d+Au

physics programs.

The electronics design specifications were driven by the requirement that the

non-stereo cathode planes provide 100 µm resolution measurements of the particle

trajectories and that the readout of the system be able to meet the global PHENIX

readout requirements.

3.3.5 Local Polarimeter Analysis

The beam polarization direction at the PHENIX interaction point (PHENIX IP) is

measured by using the single transverse-spin asymmetry for neutron production in pp

collisions [53]. This asymmetry was discovered in 2002 (Run2) in a pilot experiment

at the twelve o’clock interaction point (IP12) to search for any spin effects in the p+p

collisions. In the IP12 experiment an electro-magnetic calorimeter system based on

lead-tungstate crystals was employed to detect photons and neutrons. A large and

negative asymmetry for neutron production (∼ −0.11) [54] was measured. These

results were confirmed towards the end of that run using a hadronic calorimeter

system based on one Zero Degree Calorimeter (ZDC) module situated on the opposite

side of the IR at IP12. At φ = −π/2, the asymmetry was calculated as:

AN(φ) = (N(left)−N(right))/(N(left) +N(right)) (3.2)
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and at φ = 0:

AN(φ) = (N(bottom)−N(top))/(N(bottom) +N(top)) (3.3)

This unexpectedly discovered analyzing power was used to monitor the polariza-

tion vector at the PHENIX IP in RHIC Run3pp. In Run3pp the neutron asymmetry

was measured using the ZDC (3 modules) and newly installed Shower Max Detector

(SMD) between the first and the second ZDC module (counting from the PHENIX

IP direction).

The analysis comprised of two parts: neutron identification and asymmetry calcu-

lation. Neutrons were identified by requiring energy deposition in the second module

of the ZDC. Since one ZDC module is 50 radiation lengths long, any electro-magnetic

component of the shower produced in the collisions was absorbed in the first module.

In the course of the analysis, it was found that requiring the energy deposited in the

second module is equivalent to requiring hits in the SMD.

Requiring hits in the SMD is actually essential in the asymmetry calculation since

the hit position of neutron is required. The SMD is the two layers of the scintillation

hodoscope in x and y directions. A PISA simulation showed that hadronic shower

induced by high energy neutrons produces at least two hits in each direction. There-

fore at least two ”hits” in each hodoscope are required. The center of gravity of the

shower is calculated using the ADC counts in each hit, and is then used as the hit

position of the neutron.

3.4 Data Acquisistion

The general method and procedure of Data AcQuisition (DAQ), like the exper-

imental setup, has been more than adequately described in previous dissertations
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[51, 55] as well as technical papers [56]. Here we will only give a brief overview.

The acquisition of data from a large experiment such as PHENIX requires a

concerted effort by a large number of people. In order not to be overwhelmed by

the volume of data, and to prevent loss of desired events, a system of triggers is

used. Selected detectors are used for this purpose, which must have fast information

available upon which to trigger.

The information from each sub-detector is buffered by the Front End Modules

(FEMs). If the event is selected by the local level 1 (LL1) trigger, the data from

each sub-detector is then gathered in the corresponding sub-event builder (SEB).

The event builder (EvB) reconstructs the event when all SEBs have acquired the

data from that event.

Since PHENIX can record events at the maximum rate of 25 kHz, a hardware

trigger system is needed to reduce event rate to within this limitation. An electron

trigger is used to enrich data. In particular, the electron trigger in PHENIX is

realized with the EMCal-RICH trigger system (ERT), and considered to be a sub-

system in its own right. It is composed of the EMCal Level 1 trigger system and the

RICH Level 1 trigger system.

The RICH Level 1 trigger system produces a trigger bit when the charge sig-

nal gained from the RICH trigger tiles exceeds over the threshold of three photo-

electrons. The 256 RICH trigger tiles, each of which consists of photo-multipliers

(PMTs), cover all 5120 PMTs in the RICH. The trigger threshold are determined

by simulations to optimize the detection efficiency and the rejection power. The

rejection power is defined by the ratio of the number of minimum bias events to the

number of triggered events. They are installed into the RICH Front-End Electronics

(RICH FEE) in the PHENIX.

The front end electronics of the electromagnetic calorimeter (EMCal) is capable
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of detecting electrons and photons above three different programmable thresholds

(4x4a, 4x4b and 4x4c) in overlapping trigger tiles and above one programmable

threshold (2x2) in non-overlapping tiles. Each tile processes the signals from 2x2

PMTs and each Front End Module (FEM) collects the signals from 36 tiles. This unit

of 36 tiles is called supermodule. There are 172 EMCal supermodules present; 108

for the PbSc and 64 for the PbGl. Supermodules within one sector are connected, i.e.

the summation of the signals of overlapping tiles will also be done across supermodule

borders.

Thresholds can be set at 63 different values (DAC tics) for each tile separately.

Trigger information is only available at the supermodule level, i.e. the data only

contains the information which supermodule created the trigger. This also means it

is only possible to mask of whole supermodules in case a trigger tile becomes noisy

and the rejection factors become too low.

The last thing that should be mentioned regarding the acquisition of data is that

in Run 3 (Au+Au and p+p ) quality assurance through online calibration was used

for the first time. By filtering and copying a selected portion of the data before

transfer to storage, quick analysis and mass reconstruction of J/ψ in the muon arms

and π0 reconstruction in the central arms was done to insure good data quality.
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Methodology

After looking at the experimental facility at which the data was taken for the

present analysis, we will now examine the method used to obtain a measure of

POAM. The two quantities that we will extract from our analysis are
√
〈j2

T 〉 and√
〈k2

T 〉. If we measure an imbalance in
√
〈k2

T 〉 between parallel and anti-parallel

helicity events, this could be an indication of the presence of POAM. kT (intrinsic

partonic transverse momentum) has been defined in Section 1.4; while jT (transverse

fragmentation momentum) is illustrated and explained in Fig. 4.2.

4.1 Jet-Jet Correlations

The properties of jets produced in p+p collisions at
√
s = 200 GeV are mea-

sured using the method of two particle correlations first used at CERN-ISR [57, 58]

and developped extensively by J. Rak and others for spin-uncorrelated jT and kT

measurements at PHENIX [59, 60, 23, 22].

In Fig. 4.1 we represent a two jet hard scattering event from a p+p collision in

the transverse plane. The dashed lines represent the two jets in the partonic center-
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of-mass frame. The two jets are therefore back-to-back with equal and opposite

momenta in this plane. They may be acoplanar in the z-direction as the center-of-

mass boost for two partons with momentum fractions x1, x2 is:

ycm =
1

2
ln
(
x1

x2

)
(4.1)

but in the transverse plane they will be colinear.

However, because of kT they are no longer back-to-back in the lab frame. Their

momenta are now represented by the solid lines and are now acoplanar. If we could

measure the final transverse momenta of the two jets directly we would have a mea-

surement of the initial partonic transverse momenta kT,1 +kT,2, which we will hence-

forth call ~kTpair.

Figure 4.1: Jet-jet collision in the transverse plane. The colinearity of the two jets
is broken by partonic kT .

Unfortunately, we can only measure particles that have hadronized from the par-

tons, which complicates matters. Fig. 4.2 shows that when the initial parton with

transverse montum p̂T hadronizes the resulting particle carries transverse momentum

pT which differs in direction from the initial parton by a finite angle α∗. The trans-

verse momentum of the hadron differs from its projection on the parton transverse

momentum by a quantity called jT : transverse fragmentation momentum.

Instead of studying two-jet correlations, which is not possible at PHENIX, we

will study two-particle correlations by plotting ∆φ, their angular separation in the
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Figure 4.2: Jet fragmentation. The p̂T of the initial parton is not the same as the
pT of the detected particle, nor are they even colinear. The perpendicular pT boost
due to fragmentation is called jT .

transverse plane, to obtain a figure similar to Fig. 4.3. When the angular separation

is small, i.e. the event is in the first, narrower peak, the two particles come from the

same jet. The width (σN) of this first, near-side, peak gives us a measurement of

jT . The two particles may also come from the two opposite jets, i.e. their angular

separation lands in the second, wider, far-side peak. The width (σF ) of this far-side

peak gives us a convolution of jT with the fragmentation variable, z, and the partonic

transverse momentum, kT . z is determined through a combined analysis of the

measured π0 inclusive and associated spectra by determining the jet Fragmentation

Function.

The specific particles used in this correlation study will be the π0 for the leading,

trigger particle and a charged hadron (h±) for the associated particle. This choice

reflects the PHENIX detector capabilities as well as trigger bias. Since a key analysis

for PHENIX is the π0 ALL analysis, π0 detection and trigger efficiency is relatively

well understood.

4.2 Jet Angular Correlations

A more complete diagram of the intial and final state variables of this analysis is

shown in Fig. 4.4.
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Figure 4.3: Cartoon azimuthal angle Correlation Function

The transverse plane is still a two dimensionnal plane and we can consider kT

a vector with components kTx and kTy. We will label the jet-jet direction as the x

direction, and y to be perpendicular to the jet-jet direction.

The two components of kT then result in different experimentally measurable

effects. kTy leads to the acoplanarity of the di-jet pair while kTx makes the momenta

of the jets unequal which results in the smearing of the steeply falling pT spectrum

as mentioned in Chapter 2. This causes the measured inclusive jet or single particle

cross section to be smeared by more higher-pT particles than the expected pQCD

value.
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Figure 4.4: (a) Schematic view of a hard scattering event in the plane perpendicular
to the beam. Two scattered partons with transverse momenta p̂T in the partons’
center of mass frame are seen in the laboratory frame to have momenta p̂T t and p̂Ta.
The net pair transverse momentum p̂Tpair corresponds to the sum of two ~kT -vectors
of the trigger and associated jet. The trigger and associated jet fragment producing
high-pT particles labeled as pT t and pTa. The projection of kT perpendicular to p̂T t

is labeled as kTy. The transverse momentum component of the away-side particle
~pTa perpendicular to trigger particle ~pT t is labeled as pout. (b) The same schematics
as in (a), but the trigger and associated jet fragmentation transverse momentum
component jTyt and jTya are also shown.
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4.3 Correlation Functions

As previously mentioned, this analysis uses two-particle azimuthal correlation func-

tions between a π0 and associated charged hadron (h±) to measure the distribution

of the azimuthal angle difference ∆φ = φt − φa (see Fig. 4.5).

The Correlation Function is defined as:

C (∆φ) = N · Ncorr (∆φ)

Nuncorr (∆φ)
(4.2)

where Ncorr (∆φ) is the observed ∆φ distribution for π0−h± particle pairs in the

same event, Nuncorr (∆φ) is the ∆φ distribution for particle pairs selected from mixed

events and N =
∑
Nuncorr/

∑
Ncorr, the normalization constant. Mixed events were

obtained by randomly selecting each member of a particle pair from different events

having similar vertex position. Two methods are now available for the analysis:

• We divide the Correlation Function by the mixed event distribution whic cor-

rects effects due to the limited PHENIX azimuthal acceptance and for the

detection efficiency. We then fit the measured Correlation Function by two

Gaussians, one for the near-side component (around ∆φ = 0) and one for the

far-side component (around ∆φ = π ), and a constant for the uncorrelated

pairs from the underlying event. This leaves a total of five free parameters

to be determined - the areas and widths of the above two Gaussians: YN ,σN

for the near-angle component and YF , σF for the far-angle component and the

constant term describing an uncorrelated distribution of particle pairs which

are not associated with jets.

• The second more recently developped [22] method involves fitting the raw data

to a Gaussian in the near side peak and to a modified Gaussian, Eq. (4.15),

in the far side peak from which we will extract pout and then using Eq. (4.14)
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calculate x−1
h 〈zt〉

√
〈k2

T 〉. This second method is more theoretically sound and

provides more accurate results, it is the method we shall use in our analysis.

The
√
〈j2

T 〉 value is extracted directly from the near side peak width σN , as

with the first method.
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Figure 4.5: Correlation Function. The
√
〈j2

T 〉 value is extracted directly from the
near side peak width σN .

For two particles with transverse momenta pT t, pTa from the same jet, the width

of near-side correlation distribution, Fig. 4.5, can be related to the RMS value of the
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two-dimensional vector jT as:

√
〈j2

T 〉 =

√
2
〈
j2
Ty

〉
'
√

2
pT t · pTa√
p2

Tt + p2
Ta

σN (4.3)

in the case when
√
〈j2

T 〉 � pT t and pTa.

In order to extract 〈|kTy|〉, or

√〈
k2

Ty

〉
we start with the relation between 〈|pout|〉,

the average absolute transverse momentum component of the away-side particle ~pTa

perpendicular to trigger particle ~pT t in the azimuthal plane (see Fig. 4.4), and kTy,

〈|pout|〉2 = x2
E

[
2 〈|kTy|〉2 + 〈|jTy|〉2

]
+ 〈|jTy|〉2 (4.4)

where:

xE =
~pT t · ~pTa

p2
T t

=
pTa · cos ∆φ

pT t

(4.5)

represents the fragmentation variable of the away-side jet. Furthermore, as men-

tioned earlier, the average values of trigger and associated jet momenta are generally

not the same. There is a systematic momentum imbalance due to kT -smearing of

the steeply falling parton momentum distribution. The event sample with a condi-

tion of pT t > pTa is dominated by configurations where the kT -vector is parallel to

the trigger jet and antiparallel to the associated jet and (p̂T t − p̂Ta) 6= 0. Here we

introduce the hadronic variable xh in analogy to the partonic variable x̂h:

xh =
pT t

pTa

(4.6)

and

x̂h

(〈
kT

2
〉
, xh

)
=
p̂Tt

p̂Ta

(4.7)
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In order to derive the relation between the magnitude of pout and kT let us first

consider the simple case where we have neglected both trigger and associated jT (see

panel (a) on Fig. 4.4). In this case one can see that

〈|pout|〉 |jTt=jTa=0 = 〈|pout|〉00
=
√

2 〈|kTy|〉 pTa

〈p̂Ta〉

=
√

2 〈|kTy|〉 〈zt〉 xh

x̂h

(4.8)

Rewriting the formula for pout in terms of
√
〈k2

T 〉, we get:

√
〈p2

out〉00 = 〈zt〉
√
〈k2

T 〉
xh

x̂h

(4.9)

where we have taken
〈
kT

2
〉

=
〈
2k2

Ty

〉
.

However, the jet fragments are produced with finite jet transverse momentum

jT . The situation when the trigger particle is produced with jTyt > 0 GeV/c and

the associated particle with jTya = 0 GeV/c is shown on Fig. 4.4 part (b). The pout

vector picks up an additional component:

〈
p2

out

〉
|jTt>0,jTa=0 =

〈p2
out

〉
00

+

〈
j2
Tty

〉
p2

T t

(
p2

Ta −
〈
p2

out

〉
00

) p2
T t −

〈
j2
Tty

〉
p2

T t

(4.10)

With an assumption of jTyt << pT t we found that:

〈
p2

out

〉
|jTt>0,jTa=0 = x2

h

[
〈zt〉2

〈
kT

2
〉 1

x̂h

+
〈
j2
Tty

〉]
(4.11)

We include jTa in the same approximation, jTya << pT t, i.e. colinearity of jTa

and pout, with the result that:

〈
p2

out

〉
= x2

h

[
〈zt〉2

〈
kT

2
〉 1

x̂h

+
〈
j2
Tty

〉]
+
〈
j2
Tay

〉
(4.12)
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and we solve for x−1
h 〈zt〉

√
〈k2

T 〉:

x−1
h 〈zt〉

√
〈k2

T 〉 = x−1
h

√
〈p2

out〉 −
〈
j2
Tay

〉
− x2

h

〈
j2
Tty

〉
(4.13)

If we assume no difference between jTt and jTa then we have:

〈zt(kT , xh)〉
√
〈k2

T 〉
x̂h(kT , xh)

= x−1
h

√
〈p2

out〉 −
〈
j2
Ty

〉
(1 +−x2

h) (4.14)

All quantities on the right-hand side of Eq. (4.14) can be directly extracted from

the Correlation Function. The Correlation Functions are measured in the variable

∆φ in bins of pT t and pTa, and the RMS of the near and away peaks σN and σF are

extracted.

We extract
√
p2

out directly for all values of pTa and pT t by fitting the correlation

function in the π/2 < ∆φ < 3π/2 region by

dNaway

d∆φ

∣∣∣∣∣
3π/2

π/2

=
dN

dpout

dpout

d∆φ
=

−pTa cos ∆φ√
2π < p2

out >Erf
( √

2pTa

<p2
out>

)e
(
−

p2
Ta

sin2 ∆φ

2〈p2
out〉

)
(4.15)

where we assumed a Gaussian distribution in pout. We use a Gaussian function

in ∆φ in the near angle peak to extract
√
〈j2

T 〉.

To summarize, our results are given in terms of σN and pout which we ex-

tract directly from the Correlation Functions, and the derived quantities
√
〈j2

T 〉 and

x−1
h 〈zt〉

√
〈k2

T 〉.

We go one step closer to
√
〈k2

T 〉 by extracting 〈zt〉
√
〈k2

T 〉 by assuming that within

the bins used in analysis (see Chapter 6):

x̂−1
h =

p̄Ta

p̄Tt

(4.16)

where p̄Ta and p̄Tt are the mean pTa and pT t in the bins being considered.
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Analysis

5.1 π0 Analysis

5.1.1 π0 Trigger

Since we depend so heavily on proper π0 identification and triggering information,

it is relevant to include a short discussion on the π0 analysis. For such an analysis we

used mainly statistics from the trigger selection known as ERT Gamma3&BBCLL1

(below we’ll call it Gamma3). This selection is a trigger combination of BBC and

EMCal trigger combined with a lack of trigger from the RICH, effectively triggering

on high pT photons.

The π0 cross section analysis is done following the same approach as described

in PHENIX publications [61, 62, 63, 64]. Minimum bias trigger is formed by two

beam-beam counters (BBC) requiring at least one PMT fired in each BBCs. An

online collision z-vertex cut of ±30 cm was imposed.

The asymmetry analysis is based on π0 counting in each bunch crossing in each
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run, luminosity measurements [65] and beam polarization measurements [53].

5.1.2 Particle Reconstruction

A p+p data sample corresponding to a PHENIX-sampled integrated luminosity

of 0.35 pb−1 at
√
s = 200 GeV was used for the π0 analysis.

The minimum bias (MB) trigger is obtained from the charge multiplicity in the

two BBCs situated at large pseudo-rapidity (η ≈ ±(3.0− 3.9)). The BBCs were also

used to determine the collision vertex, which is limited to a ± 30 cm range in this

analysis. The high-pT trigger requires an additional discrimination on sums of the

analog signals from non-overlapping, 2x2 groups of adjacent EMCal towers situated

at mid-rapidity (|η| < 0.35) equivalent to an energy deposition of 750 MeV .

Neutral pions, which are used as trigger particles, are detected by the reconstruc-

tion of their γγ decay channel. Photons are detected in the EMCal, which has a

timing resolution of ≈ 100 ps (PbSc) and ≈ 300 ps (PbGl) and energy resolution

of σE/E = 1.9% ⊕ 8.2%/
√
E(GeV ) (PbSc) and σE/E =0.8% ⊕ 8.4%/

√
E(GeV )

(PbGl). In order to improve the signal/background ratio we require the minimum

hit energy > 0.3 GeV , a shower profile cut as described in other analyses, and no

accompanying hit in the RICH detector, which serves as a veto for conversion elec-

trons. A sample of the invariant mass distribution of photon pairs detected in the

EMCal is shown in Fig. 5.1.

5.1.3 Pion Selection

To reject the photon conversion backgrounds in the charged pion candidates, the

shower information in the EMCal is used. Since most of the background electrons

are genuine low pT particles that were mis-reconstructed as high pT particles, simply
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Figure 5.1: The measured γγ invariant mass distribution for pair pT in 4 < pTγγ <
5 GeV/c . The peak is fitted with a Gaussian to measure width and estimate error.
The signal/background ratio within 2σ of the mean ranges from ≈6 at 3 GeV/c up
to ≈ 15 at 8 GeV/c .

requiring a large deposition of shower energy in the EMCal is effective in suppressing

the electron background. In this analysis a momentum dependent energy cut at

EMCal is applied:

E > 0.3 + 0.15pT (5.1)

In addition to this energy cut, the shower shape information is used to further

separate the broad hadronic showers from the narrow electromagnetic showers and

hence reduce conversion backgrounds. The difference of the EM shower and hadronic
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shower is typically characterized by a χ2 variable,

χ2 =
∑

i

(
Emeas

i − Epred
i

)2

σ2
i

(5.2)

where Emeas
i is the energy measured at tower i and Epred

i is the predicted energy

for an electromagnetic particle of total energy
∑

i E
meas
i . We use the probability

calculated from this χ2 value for an EM shower, ranging from 0 to 1 with a flat

distribution expected for an EM shower, and a peak around 0 for an hadronic shower.

5.2 Spin-Sorted Analysis

This analysis uses the code and principles developed in previous jet-jet correlations

analyses on Au+Au and p+p kT studies[59, 60, 23, 22], takes the spin information

provided by the Relative Luminosity Working Group (RLWG) [65] combined with

polarization information from the local polarimeter (see Chapter 3) and looks at the

asymmetry in the results for parallel and anti-parallel helicity configurations. The

run selection for this analysis is the same as for the non-spin analysis, amputated of

the runs that did not have polarization information provided by the local polarimetry

group. Even when the spin information is provided, some of the runs have very little

good polarization information, and consequently do not contribute much statistics, as

we only consider events from bunch crossings that have well measured polarizations.

A total of 197 runs were used (Table 5.1) for a total of 18.8M events.

The cuts for the π0 are the same as for the π0 analysis [60], and described in

Section 5.1, namely:

• Events

– abs(z vertex) < 30 cm
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87621 87623 87625 87689 87691 87693 87703 87705 87791
87793 87829 87832 87835 87839 87841 87843 87845 87899
87901 87904 87906 87908 87910 87912 87923 87925 87927
87929 87932 87997 87999 88115 88125 88127 88129 88131
88243 88258 88260 88351 88396 88460 88462 88466 88471
88475 88578 88580 88582 88584 88586 88825 88827 88829
88846 88869 88873 88877 88879 88944 88946 88962 88964
88993 88995 88999 89001 89003 89080 89092 89096 89098
89100 89103 89105 89117 89119 89121 89128 89130 89135
89211 89297 89299 89303 89316 89318 89321 89323 89325
89345 89451 89453 89463 89520 89527 89529 89541 89618
89624 89626 89629 89634 89642 89644 89646 89648 89683
89685 89693 89695 89697 89707 89709 89711 89713 89715
90202 90209 90211 90213 90215 90217 90219 90226 90228
90302 90303 90306 91262 91268 91270 91273 91275 91314
91316 91318 91321 91375 91443 91447 91449 91452 91455
91457 91460 91462 91464 91472 91474 91476 91478 91596
91599 91601 91679 91681 91716 91718 91720 91726 91729
91731 91840 91842 91844 91846 91848 91851 91853 91855
91977 91979 91983 91985 91987 92002 92018 92030 92034
92047 92192 92194 92228 92230 92232 92234 92238 92242
92244 92432 92434 92436 92438 92440 92444 92446

Table 5.1: Run selection

– mixed event abs (∆ z vertex) < 3 cm

• Trigger π0

– Asymmetry < 0.9

– probPhot 0.1

– χ2 < 3.0

– Emin < 0.3

In addition to the cuts mentioned above, a photon time-of-flight (TOF) cut is

made. The photon times are plotted for events in both the PbSc and PbGl. A

73



Chapter 5. Analysis

gaussian is fitted to the graph and then the width of gaussian is used as a parameter,

σ. In Fig. 5.2, which shows photon candidates in the PbSc for a particular tower in

run 88243, the red lines represent the 2 σ deviation region.
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Figure 5.2: Time of flight of photon candidates in the lead scintillator EM Calorime-
ter for run 88243. The red lines represent the 2 σ deviation region.

Charged particles are reconstructed in each PHENIX central arm using a drift

chamber, followed by two layers of multiwire proportional chambers with pad read-

out. Particle momenta are measured with a resolution δp/p = 0.7% + 1.1% GeV/c .

A confirmation hit is required in PC2. We also require that no signal in the RICH

detector is associated with these tracks. These requirements eliminate charged par-

ticles which do not originate from the event vertex, such as beam albedo and weak

74



Chapter 5. Analysis

decays, as well as conversion electrons. The more important cuts include:

• 2 σ match between PC2 and PC3

• 2 σ EmCal match

• ± 75 cm DC track

5.3 Systematic Errors

The systematic errors explored extensively in previous works on jet-jet azimuthal

correlations [59, 60, 23, 22] are not considered to first order. Since the object is

to compare, i.e. take the difference between, parallel and anti-parallel helicity event

sub-sets, systematic errors should cancel to a very large degree, as is the assumption

for all asymmetry measurements. A check was made on the z-vertex distribution to

confirm this impression (see Fig. 5.3).
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Figure 5.3: (left) Vertex distribution for parallel and anti-parallel helicity events.
(right) Vertex distribution asymmetry.
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The Bunch Shuffling technique was also used (see Section 6.5) to confirm that

the errors are essentially statistical in nature, or at the very least accounted for in

our error bars. The error bars on σN and pout are taken from the CF fitting routine,

and the errors on the extracted values jT , x−1
h 〈zt〉

√
〈k2

T 〉, and 〈zt〉
√
〈k2

T 〉 are given

by the following formulae:

δjT = δσN · p̄Tap̄Tt√
p̄2

Ta+p̄2
Tt

√
2

δ
(
x−1

h 〈zt〉
√
〈k2

T 〉
)

=

√
(δpout)

2·p2
out+(jTy·δjTy·(1+x2

h
))

2

x2
h
·(p2

out−j2
Ty·(1+x2

h
))

δ
(
〈zt〉

√
〈k2

T 〉
)

=
δ

(
x−1

h
〈zt〉
√
〈k2

T 〉
)

x−1
h
〈zt〉
√
〈k2

T 〉
〈zt〉

√
〈k2

T 〉

(5.3)

where we use the notation δ for the error, so as not to confuse with ∆ used for

the difference in results between two data sets. jTy is related to jT by a factor of
√

2

and xh is given by Eq. (4.16).

We see that δjT depends on δσN , and the errors for the two other derived quan-

tities depend on both δσN and δpout. Finally we note that the third equation of

Eq. (5.3) shows that the relative error for the last two quantities are the same.
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Results

6.1 Correlation Functions

The basis of the analysis is the extraction of the quantity 〈zt〉
√
〈k2

T 〉 from the

Correlation Function. The Correlation Function is the azimuthal angle distribution

for π0−h± particle pairs (see Section 4.3). Run3pp is relatively poor in statistics, so

to get a result with reasonable statistical error bars we have split the statistics into

only two bins, given in Table 6.1.

Bin 1 Bin 2

pT t 1 < pT t ≤ 3GeV/c 3 < pT t ≤ 7GeV/c

pTa 1 < pTa ≤ 4GeV/c 1 < pT t ≤ 4GeV/c

Table 6.1: pT t and pTa values for 2-bin analysis
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The Correlation Functions (CFs) for the two bins are shown in Fig. 6.1 and

Fig. 6.2. Fig. 6.1 shows the uncorrected ∆Φ distributions and the mixed event

PHENIX detector acceptance and efficiency background. Fig. 6.2 shows the functions

normalized and corrected for backgrounds. These functions are fit to a constant plus

two Gaussians, one for the near side peak and one for the away side peak (the far

side peak is fitted to a modified Gaussian, see Section 4.3). The χ2/DOF values for

the fits to the different uncorrected CFs are given in Table 6.2.

χ2/DOF 1 < pT t < 3 3 < pT t < 7

parallel helicity 4.63(34) 2.33(34)

anti-parallel helicity 3.07(34) 2.13(34)

Table 6.2: Correlation Function χ2/DOF values. The number of degrees of freedom
(NDF) are given in parentheses.

Two things need to be noted:

1. We are using the second method described in Section 4.3 which fits a Gaussian

and a modified Gaussian to the uncorrected CFs.

2. The χ2/DOF values are not outstanding but they are significantly better than

the values obtained from the first method which fits two Gaussians to the

corrected CFs. These bad fits stem from the fact that we still do not fully

understand the origin of the extra ”bumps” present at π/2 and 3π/2 in the

corrected CFs. Study and simulation are ongoing in order to determine whether

they come from background or perhaps our mixed event pool is inaccurate, or

perhaps some physics phenomenon has not been properly acccunted for.
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Figure 6.1: Uncorrected Correlation Functions. These functions are the simple π0-
h± particle azimuthal correlations (data points). The black lines are the fits to the
data given by the formulas derived in Section 4.3. Also shown are the mixed event
background (blue lines). In the top row are the parallel event CFs, in the bottom
row the anti-parallel event CFs. The left column corresponds to Bin 1 events and
the right row to Bin 2 events.
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Figure 6.2: Corrected Correlation Functions. The graphs are in the same order as
in Fig. 6.1. Here the background has been divided out and the remaining functions
are fit to a constant plus two Gaussians, one for the near side peak and one for the
away side peak.
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6.2 Extracted Results

Using the CFs, jT is extracted from the width of the near side peak (σN), and pout

is taken from the fit to the far side peak, from which we deduce x−1
h 〈zt〉

√
〈k2

T 〉 and

〈zt〉
√
〈k2

T 〉. The results for the 2-bin analysis are shown in Fig. 6.3 and Fig. 6.4.

Red square points are results for parallel helicity events, blue triangles are re-

sults for anti-parallel helicity events. The figures where only black points are given

(Fig. 6.4) represent the difference in the values for the two different helicity configu-

rations. The top row of Fig. 6.3 shows σN and the extracted value jT . The bottom

row shows pout and the derived quantity x−1
h 〈zt〉

√
〈k2

T 〉. Fig. 6.4 shows the difference

for x−1
h 〈zt〉

√
〈k2

T 〉and
√
〈k2

T 〉 〈zt〉2. The dashed vertical line in these plots represents

the error-weighted average difference value. The values obtained in Fig. 6.4 are given

in Table 6.3.

difference Bin 1 Bin 2 weighted average

x−1
h 〈zt〉

√
〈k2

T 〉 (130 ± 69) MeV/c (153 ± 230) MeV/c (132 ± 66) MeV/c

〈zt〉
√
〈k2

T 〉 (114 ± 62) MeV/c (64 ± 101) MeV/c (100 ± 53) MeV/c

Table 6.3: Results of the x−1
h 〈zt〉

√
〈k2

T 〉 and 〈zt〉
√
〈k2

T 〉 differences for the two-bin
analysis.

The formula used for calculating the error-weighted average x̄ is:

x̄ =

∑
i

xi

(δxi)2∑
i

1
(δxi)2

(6.1)
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Figure 6.3: 2-Bin analysis results. (top) shows σN and the extracted value jT .

(bottom) shows pout and the derived quantity x−1
h 〈zt〉

√
〈k2

T 〉. In all four graphs red
square points are results for parallel helicity events and blue triangles are results for
anti-parallel helicity events.
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Figure 6.4: 2-Bin analysis difference results. (top) shows the x−1
h 〈zt〉

√
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T 〉 difference

between parallel and anti-parallel helicity events. (bottom) shows the 〈zt〉
√
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T 〉
difference between parallel and anti-parallel helicity events. The dashed non-zero
horizontal lines represent the error-weighted average value for the two bins given by
Eq. (6.1).
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The error δx̄ associated with this weighted average is given by:

1

δx̄
=

1

(δxi)2
(6.2)

The error bars are mostly statistical in nature, but they do also stem from the

accuracy of the fit, as the χ2 of the Correlation Function fits are taken into account.

6.3 Binning

Another analysis using smaller bins was made, and the results are shown in Fig. 6.5,

Fig. 6.6 and Table 6.4 with the same conventions regarding color, graph placement

and the significance of the dashed vertical lines as in Section 6.2. The pTa range is

the same as previously, but the pT t bins are now narrower (0.5 GeV/c wide for pT t

less than 3 GeV/c , and 1 GeV/c wide for pT t greater than 3 GeV/c .)

difference weighted average

x−1
h 〈zt〉

√
〈k2

T 〉 (102 ± 59) MeV/c

〈zt〉
√
〈k2

T 〉 (96 ± 50) MeV/c

Table 6.4: Results of the x−1
h 〈zt〉

√
〈k2

T 〉 and 〈zt〉
√
〈k2

T 〉 differences for the multi-bin
analysis.

The error-weighted averages for the two different binning analyses are compatible

and non-zero.
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Figure 6.5: Multi-bin analysis results. (top) shows σN and the extracted value jT .

(bottom) shows pout and the derived quantity x−1
h 〈zt〉

√
〈k2

T 〉. In all four graphs red
square points are results for parallel helicity events and blue triangles are results for
anti-parallel helicity events.
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Figure 6.6: Multi-bin analysis difference results. (top) shows the x−1
h 〈zt〉

√
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T 〉
difference between parallel and anti-parallel helicity events. (bottom) shows the
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6.4 Combined Event Comparison

A first check of our results is to look at the σN , jT , pout, and x−1
h 〈zt〉

√
〈k2

T 〉 values

for all events, both parallel and anti-parallel helicity event and compare them with

the spin-sorted data. We should find values for this data set situated between the

parallel and anti-parallel helicity data sets. Fig. 6.7 shows these results, where:

• red squares: same helicity

• blue triangles: opposite helicity

• black dots: both helicity sets

We see that the combined event value is almost always located between the par-

allel helicity event and the anti-parallel helicity event results. Taking error bars into

consideration, the combined event results are always consistent with an intermediate

value between the two event sets.

6.5 Bunch Shuffling

In order to understand the nature of our errors, Bunch Shuffling was done. The

method of bunch shuffling consists of assigning a random spin orientation to each

bunch crossing for each run analyzed and then conducting the analysis using the

fake parallel, anti-parallel helicity configurations. The difference in x−1
h 〈zt〉

√
〈k2

T 〉

and 〈zt〉
√
〈k2

T 〉 values for the two randomly determined data sets are calculated.

This is done a number of times in order to determine the stability of the fit results

for the real different helicity data sets. A relatively large number of iterations is

necessary, because the randomization is not done on an event-per-event basis but

only on a total of good spin configuration bunch crossings ∼ 50 per run.
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Figure 6.7: Combined helicity analysis results. (top) shows σN and the extracted

value jT . (bottom) shows pout and the derived quantity x−1
h 〈zt〉

√
〈k2

T 〉. The black
dots reresent the quantities calculated or derived for events from both helicity states.
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A total of 250 bunch shuffles were run using the same pT t and pTa bins as in

the 2-Bin analysis. The results are given in Fig. 6.8, which shows the spread for

the x−1
h 〈zt〉

√
〈k2

T 〉 difference in the first row and for the 〈zt〉
√
〈k2

T 〉 difference in the

second row. The columns correspond to the bins used in Table 6.1. The x-axis is in

units of GeV/c . The averages for all graphs are ∼ 0, and the RMS values are given

in the Table 6.5.

difference Bin 1 Bin 2

∆
(
x−1

h 〈zt〉
√
〈k2

T 〉
)

(0.0 ± 73) MeV/c (-1.2 ± 197) MeV/c

∆
(
〈zt〉

√
〈k2

T 〉
)

(0.4 ± 62) MeV/c (4 ± 81) MeV/c

Table 6.5: Bunch Shuffling results. Two bins were used, with the same pT t and pTa

values as for the 2-Bin analysis.

The results of interest, the RMS value of ∆
(
x−1

h 〈zt〉
√
〈k2

T 〉
)

and ∆
(
〈zt〉

√
〈k2

T 〉
)

give an indication of statistical uncertainty and compares favorably with the error

bars in Fig. 6.4, and the difference should give an order of the residual systematic

uncertainty. The values are compared in Table 6.6, which show that the systematic

errors appear to be negligeable. If anything, we have overestimated the values of our

error bars. Moreover, the fact that the mean is ≈ 0 for all cases reflects well on the

method used.
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Figure 6.8: Bunch Shuffling.(top) shows the ∆
(
x−1

h 〈zt〉
√
〈k2

T 〉
)

spread for the differ-

ent randomly assigned helicity sets and (bottom) shows the ∆
(
〈zt〉

√
〈k2

T 〉
)

distribu-
tion for the different randomly assigned helicity set shuffles. The red line represents
the average, and the blue lines show the RMS values of the distributions.
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∆
(
〈zt〉

√
〈k2

T 〉
)

comparison Bunch Shuffling RMS data error difference

bin 1 62 MeV 62 MeV 0 MeV

bin 2 81 MeV 101 MeV - MeV

Table 6.6: Error comparison. The ∆
(
〈zt〉

√
〈k2

T 〉
)

errors are shown from the results
and compared to the variance of the bunch shuffling distribution.

6.6 Pseudo-Centrality Sorted Results

The question of centrality of the events should not be neglected. Even if in theory

a non-zero result arises from the integrated cross-section, we should not asume in the

absence of any centrality binning that we collect events from all centrality ranges. It

may well be that the conditions of our analysis place us in a specific centrality range.

As a very fist attempt to explore the possibility of centrality dependence, we have

looked at results as a function of BBC multiplicity. BBC multiplicity is defined as

the number of hits in the North BBC plus the number of hits in the South BBC. We

remind the reader that the BBCs are detectors located in the forward rapidity regions

(3.1 < |η| < 3.9), both North and South, and have full azimuthal coverage. They are

a natural candidate for centrality studies as they are used to determine centrality

for Au+Au collisions in conjunction with the ZDCs. The ZDCs show little, if any,

hits on an event-per-event basis and thus are of little use here. A look at the BBC

multiplicity distribution in Fig. 6.9 shows the cuts on the different BBC bins. The

results for ∆x−1
h 〈zt〉

√
〈k2

T 〉 calculated for the different bins are given in Table 6.7 and

shown in Fig. 6.10. The same pT t and pTa bins are used as in the multi-bin analysis,
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but with a lower cut-off dictated by fewer statistics.

BBC Multiplicity
0 5 10 15 20 25 30 35 40 45 50
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Figure 6.9: BBC multiplicity. The red lines show the delineation for the different
bins. The bins have been chosen so as to contain an approximately equal number of
events.

∆
(
x−1

h 〈zt〉
√
〈k2

T 〉
)

∆
(
〈zt〉

√
〈k2

T 〉
)

low bbc (136 ± 105) MeV/c (100 ± 86) MeV/c

mid bbc (133 ± 91) MeV/c (125 ± 78) MeV/c

high bbc (-44 ± 102) MeV/c (-45 ± 77) MeV/c

Table 6.7: Centrality sorting. The values given are the error-weighted average over
the bins shown in Fig. 6.9.
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Figure 6.10: BBC multiplicity results. The extracted value x−1
h 〈zt〉

√
〈k2

T 〉 for parallel
and anti-parallel helicity events is given in the left column. In the right column the
difference in those values is given. (top) BBC mult < 8. (middle) 8 ≤ BBC mult ≤
12. (bottom) mult > 12.
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The results from BBC multiplicity binning are promising in that the high bbc bin

shows a result distinctive from the other two bins; a result that corresponds to the

näıve expectation of greater particle production associated with a higher centrality

and a negative ∆
√
〈k2

T 〉. Unfortunately, the error bars are still too large to exclude

statistical fluctuations.
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Monte Carlo

7.1 Introduction

In this section we describe a simple Monte Carlo to determine the sensitivity of

our method described in Chapter 4 to POAM. With a few simple models, we would

like to test the robustness of the assumption of a net kT effect with orbital motion

and no impact parameter determination.

The Monte Carlo will make use of the event generator PYTHIA, which simulates

p+p collisions by using measured cross-sections to calculate probable interactions and

fragmentation into hadrons. One of the parameters PYTHIA takes is the amount of

kT for the interacting partons. We will use simple models to determine the amount

of kT to enter into PYTHIA to simulate parallel and anti-parallel ~kTpair effects, then

compare the extracted values
√
〈j2

T 〉 and 〈zt〉
√
〈k2

T 〉 for each simulation.

Since little is known about the parton transverse position or momentum distri-

bution, several rather näıve assumptions are made in order to model the collisions.

We first assume constant angular velocity of partons, pθ, regardless of distance to
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the proton center. We set (arbitrarily) the maximum transverse momentum of the

partons to be 300 MeV/c at the radius of the proton we consider to be to 1.3 fm.

Here we are only considering the motion associated with orbital angular mo-

mentum. Real motion of course includes random motion in the transverse plane by

the partons, due at the minimum to the Heisenberg Uncertainty principle (see Sec-

tion 2.2). Also, this model is very much a classical rather than a quantum model.

In a second phase of MC we will need to consider that the partons will have integer

angular momenta l = 0, 1, ... and make models on the radial distribution as a func-

tion of l. Indeed, the only object of this first Monte Carlo is to calculate the pT kick

(equivalent to the ~kTpair from Chapter 4 and shown in Fig. 7.1) due to orbital angu-

lar momentum, and see if different helicity events will produce measurably different

results.

Fig. 2.3 demonstrates the mechanism of ”amplification” (peripheral & parallel

helicities, or central & anti-parallel helicities) or ”attenuation” (peripheral & anti-

parallel or central & parallel) of the coherent kT components, and Fig. 7.1 provides

a description of the relevant geometric parameters used in the calculation of the pair

transverse momentum ~kTpair, given an impact parameter b, and a parton collision

point ~r0(x0, y0).

At large impact parameter, the parallel helicity configuration gives the greater

~kTpair, at small impact parameter it is the anti-parallel helicity collisions. At mid-

impact parameter, it depends on where in the interaction area, or ”almond” the

interaction takes place. It is therefore important to use a model that determines

impact parameter and interaction point within the almond.

The probability for a particular collision with a given impact parameter is para-

metrized, then we integrate over the impact parameter in order to determine the

impact parameter averaged parton pair transverse momentum, ~kTpair. For simplicity,
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we ignore all incoherent (non-angular momentum correlated) contributions to the

parton kT .

0r

0x

0y

b

Bk

Yk

Bs Ys

Tpairk

Figure 7.1: ~kTpair parameters. ~kTpair is the sum of the ~kB and ~kY vectors. The
interaction point has coordinates x0 and y0 as measured from the center of the
interaction almond. Together they form the vector ~r0.

In theory, if we had a function P (b), the probability of having a collision at impact

parameter b, we could randomly determine a value from 0 to 1, extract the impact

parameter b, and then calculate the probability of a parton-parton interaction as a

function of our impact parameter. In PYTHIA however, we cannot use the impact

parameter because physics cross-sections are not calculated as a function of impact

parameter. This lies at the heart of a deeper problem, previously mentioned in
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Section 1.5.2; namely, that the Parton Distribution Functions are a function of x,

not radial distance. Spatial distribution of partons within the proton remains largely

conjectural (see Section 2.5), and the resolution of this unknown quantity may in

fact be correlated with our study.

We must then use our model to artificially determine an impact parameter and

collision point, which will serve only to calculate a distribution of one input pa-

rameter: the pT kick due to orbital angular momentum (|~kTpair|). The weighting

of probabilities is merely used to confirm that with a simple model and reasonable

assumptions on orbital angular momentum, this input parameter has a different

distribution based on whether the helicities of the colliding protons are parallel or

anti-parallel.

7.2 Different Models

7.2.1 Colliding Disks

The first step is to consider that the cross section of two colliding disks of radius

R for an impact parameter b is:

σ = π · b2 , for: b < 2R (7.1)

Eq. (7.1) is f1 of Fig. 7.2. The probability of colliding at impact parameter b is

then:

P (b) =

∫ b
0 πr

2 dr∫ 2R
0 πr2 dr

=

(
b

2R

)3

(7.2)

We only take jet-jet events from PYTHIA, in order to determine whether our

analysis is effective in measuring the extra pT kick we give as input. Every PYTHIA
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Figure 7.2: Impact parameter probability functions

event is a collision and so our impact parameter probability must be weighted ac-

cordingly:

P (b) =

∫ b
0 πr

2f(r) dr∫ 2R
0 πr2f(r) dr

(7.3)

where f(r) depends on the model used.

For a simple solid disc model f(r) is the surface area of the overlap region, called

the ”Almond”, seen in Fig. 7.3 (top) and Fig. 7.1. The area of the Almond is

calculated to be:
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Bs Ys

Front View

Top View

Br
Bθ
Yθ

Figure 7.3: Variables and parameters in p+p collisions. (top) shows the radial
position vectors ~sB and ~sY in the collision plane. (bottom) shows the thickness
parameters θB and θY , which can be either the volume thickness or the Woods-
Saxon density distribution. Note in the 3-dimensional case of the Woods-Saxon
density depends on ~rB,Y and not ~sB,Y .
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A(b) = 2R2 sin−1


√
R2 − b2/4

R

− b√R2 − b2/4 (7.4)

Eq. (7.4) is f2 of Fig. 7.2.

The product of the area and the cross-section gives a reasonable first order prob-

ability distribution for the impact parameter. Eq. (7.2) now becomes:

P (b) =

∫ b
0 A(r) · πr2 dr∫ 2R

0 A(r) · πr2 dr
(7.5)

Unlike Eq. (7.2), extracting b from this equation, having randomly determined

P (b) becomes problematic, so the denominator in Eq. (7.5) is approximated numer-

ically and we determine the impact parameter by binning. The interaction point is

then randomly determined within the almond area. Fig. 7.4 shows the spacial dis-

tribution of randomly determined interaction points for a) fixed impact parameter

b = 1fm, and b) probability-determined distribution.
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Figure 7.4: Monte Carlo interaction point distributions. In both graphs, the x and
y axes correspond to the x0 and y0 coordinates of the interaction. (left) shows the
interaction point distribution for a fixed impact parameter in the solid disk model.
All locations within the interaction Almond are equally probable. (right) The impact
parameter for each collision is weighted. The most likely collision point is centered
at (0,0) because it is the region available to all impact parameters. The smaller the
impact parameter, the larger the interaction Almond, and the greater the interaction
point possibilities.
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7.2.2 3D Model

A better model incorporates the thickness of the two protons as shown in (bottom)

of Fig. 7.3. The thickness of the proton at a distance s from the center is given by:

θ(s) = 2
√
R2 − s2 (7.6)

Fig. 7.5 shows the overlap of two protons for impact parameters b = 1fm and

b = 2fm.

Distance (fm)
-1 -0.5 0 0.5 1

0.5

1

1.5

2

2.5

 (fm)θ

Yθ

Bθ

2R
YθBθ

1 fm

2 fm

1 fm

2 fm

Proton Thickness Overlap

Figure 7.5: Proton thickness overlap. The blue line shows the thickness of the blue
beam proton. The red lines show the thickness of the yellow beam proton for different
impact parameters (b = 1fm and b = 2fm). Both of these are given as a function
of distance from the blue proton center of mass. The green lines show the product
of the blue and yellow thickness functions (divided by twice the proton radius)
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By integrating the thickness of both the blue and yellow protons over all x and y

within the Almond surface, we obtain a impact parameter probablility distribution

for a solid sphere:

f(r) =
∫ ∫

θB · θY dx dy | x, y ∈ A(r) (7.7)

where θB and θY are given by Eq. (7.6) and are shown in Fig. 7.5.

7.2.3 Woods-Saxon Potential

To make the model more realistic we add the Woods-Saxon density distribution

calculated at each point along the z direction (θB, θY ) shown in Fig. 7.3 (bottom).

The Woods-Saxon potential depends on certain parameters, and two examples of

density distributions are shown in Fig. 7.6, and are given by:

ρ(r) =
ρ0

1 + e
r−R

a

(7.8)

where ρ0 is the maximum parton density 0.17 fm−1, R is the proton radius 1.3

fm, and a is the thickness parameter.

The choice of the Woods-Saxon potential is somewhat arbitrary, as the real den-

sity distribution is unknown. The particular choice of the skin thickness values a

reflects a desire to approximate the partonic radial distribution, considering the lack

of quantitative measurements. The two choices made were:

1. a = 0.2fm: As seen in the left figure in Fig. 7.6, the thin skin thickness

parameter choice gives a density function similar to the ones used for heavy

ions. The proton is saturated in partons at the center, and is a scaled version

of the heavier ion.
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2. a = 0.5fm: In the right figure, the thicker skin thickness parameter shows a

more rapidly decreasing density as a function of radius more akin to the charge

density of the proton, known to be exponential.

Our f(r) now becomes:

f(r) = f(rB) · f(rY ) | x, y ∈ A(r) (7.9)

f(rB) =
∫
θB(sB)

∫
√

R2−s2
B

0

1 + e

√
x2−r2

B
−R

a

−1

drB

 dsB (7.10)

Eq. (7.9) can be written as a product of integrals rather than the integral of a

product because the two variables are independent. Since the function is the same for

both variables this simplifies the implementation of calculating the impact parameter

which is done by binning in b, x and y, and sB and sY . The values for s are calculated

and stored by binning in z and obtaining the density from the Woods-Saxon formula.

The full model bins the impact parameter from 0 to 2RGl, where RGl is an

arbitrary cut-off determined from Fig. 7.6, considering at what distance r the density

is negligeable. The cut-off values used are 2.1fm for a = 0.2fm and 3.45fm for

a = 0.5fm.

In addition we can consider the 2-Dimensional model with Woods-Saxon poten-

tial. Although this model is probably not realistic because it uses only a partonic

density imposed on a two dimensional surface, it enables us to check that the density

functions are correctly implemented. Moreover it might be considered the limit of a

saturation effect normally only associated with larger objects, such as heavy ions. At

high momenta, due to the Lorentz contraction, an effect known as the ”color glass

condensate” appears, which is simply the saturation in the beam direction of the

partonic density, which results in a uniform thickness density in the beam direction
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at the limit of saturation. The formula is the same as Eq. (7.7) exept instead of the

thickness functions θ(r) we substitute the Woods-Saxon potential Eq. (7.8).

Fig. 7.6 shows the overlap of two proton discs with Woods-Saxon potential density

distributions for impact parameters b = 1, b = 2 and b = 3 for two different thickness

values.
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Figure 7.6: Proton Woods-Saxon density overlap. The blue line shows the Woods-
Saxon density of the blue beam proton. The red lines show the Woods-Saxon density
of the yellow beam proton for different impact parameters (b = 1fm, b = 2fm and
b = 3fm). The green, pink and blue lines show the product of the blue and yellow
density functions for (left) thickness parameter a = 0.2fm and (right) thickness
parameter a = 0.5fm.

7.3 ~kTpair Dependencies

Because of the particular assumptions we have made, in particular that the quantity

pθ is constant, some interesting relationships for the parallel and anti-parallel helicity

Monte Carlo modeling can be deduced.

106



Chapter 7. Monte Carlo

From Fig. 7.1 we can calculate the values of the kT kick (|~kTpair|) for parallel and

anti-paralel helicity collisions.

‖ ~kT‖ =
√
k2

Tx + k2
Ty =

√
(kBx + kY x)2 + (kBy + kY y)2 (7.11)

The ~kB,Y vectors are related to the ~sB,Y vectors by:

~k = α

 cos θ − sin θ

sin θ cos θ

~s (7.12)

For an anti-parallel helicity collision θ is 90◦ for both ~kY and ~kB (the protons are

moving in opposite directions); for a parallel helicity collision θ for ~kY is -90◦. Thus:

 parallel: ~kB = α(−sBy, sBx) ~kY = α(sY y,−sY x)

anti-parallel: ~kB = α(−sBy, sBx) ~kY = α(−sY y, sY x)
(7.13)

The components of ~sB and ~sY can easily be broken down, using the notations in

Fig. 7.1:

~sB = ( b
2

+ x0, y0) ~sY = (− b
2

+ x0, y0) (7.14)

Thus Eq. (7.11) becomes:


par: ‖~kT‖ = α

√
(−y0 + y0)2 + ( b

2
+ x0 + b

2
− x0)2 = αb

anti: ‖~kT‖ = α
√

(−y0 − y0)2 + (b/2 + x0 − b/2 + x2
) = 2α‖~r0‖

(7.15)

As long as we consider uniform angular rotation, no matter the model, the orbital

pT kick for parallel helicity events will be proportional to the impact parameter,

regardless of where the interaction point lies within the interaction almond. For

anti-parallel helicity events the orbital pT kick only depends on the distance of the

interaction point from the center of the almond.
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7.4 Monte Carlo Results

7.4.1 Modeling Results

The results from the Monte Carlo |~kTpair| calculations for the different models are

given in Fig. 7.7.

The different 〈∆kT 〉 values for the different models are given in Table 7.1:

Model 〈∆kT 〉

Solid Disk 96 MeV

Solid Sphere 135 MeV

2D Woods-Saxon, a=0.2 168 MeV

2D Woods-Saxon, a=0.5 196 MeV

3D Woods-Saxon, a=0.2 154 MeV

3D Woods-Saxon, a=0.5 198 MeV

Table 7.1:
〈
~kTpair

〉
values for different models

Several things should be noted:

• All models used (including the 2-Dimensional) give an appreciable 〈∆kT 〉, ap-

proximately 50% of the maximum kT value of 300 MeV/c .
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Figure 7.7: Mean ~kTpair kick calculated for different Monte Carlo models. The blue

graphs represent the |~kTpair| distributions for the parallel helicity configurations, and

the red graphs represent the |~kTpair| distributions for the anti-parallel helicity config-
urations. The vertical lines represent the means of the two distributions and 〈∆kT 〉
the difference in the ~kTpair means.
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• The scale set of 300 MeV/c at r = 1.3fm with constant pθ is arbitrary.

• It is non-trivial in the extreme to make any extrapolation from result to any

particular model used in this simulation study. In no way would any positive

result from data confirm or infirm any model used.

Nevertheless, we may conclude that in the framework of a classical model, the

hypothesis[19] that if POAM exists, a mean
√
〈k2

T 〉 difference due to POAM should

exist between parallel and anti-parallel helicity events.

7.4.2 Eccentricity

To check that the models used conform to similar experiments, we compare the

eccentricity of the models as a function of impact parameter to previous studies done

on nucleus-nucleus collisions. We will use the radius of the gold nucleus. The formula

for eccentricity is given by:

e =
< x2 − y2 >

< x2 + y2 >
(7.16)

The values for the eccentricity for three models, the simple sphere, and the

Woods-Saxon weighted disk and sphere are plotted in Fig. 7.8. The graphs com-

pare favorably to values used in different analyses, exept at large b. The reason for

the discrepency is that we use a cut-off limit RGl = 8.8fm instead of integrating over

all space.

Near that cut-off limit we have for ε = R− b/2:

lim
ε→0

e =
< ε2 − ε2R >

< ε2 + ε2R >
=

2R− ε
2R + ε

= 1 (7.17)

which is the result we see in Fig. 7.8.
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Figure 7.8: Au+Au eccentricity

7.4.3 PYTHIA Results

Beyond calculating an eventual effect from modeling, we wish to test our analysis

for its sensitivity to such an effect. The analysis code was run on two PYTHIA

generated event sets. The first, simulating an anti-parallel helicity event set, had

kT = 2.5GeV/c as a mean kT input. The parallel helicity simulated set has kT =

2.75GeV/c as a mean kT input. PYTHIA can only take a mean kT value and then

determines a random kT on an event-per-event from a Gaussian distribution centered

on the mean input value. Giving two different mean values could simulated parallel

and anti-parallel data sets fairly well. The distributions shown in Fig. 7.7 are not

Gaussian, but they are themselves only guesses based only different models. The

results are shown in Fig. 7.9, Fig. 7.10, and Table 7.2.
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Figure 7.9: PYTHIA MC analysis results. (top) shows σN and the extracted value jT .

(bottom) shows pout and the derived quantity x−1
h 〈zt〉

√
〈k2

T 〉. In all four graphs red
square points are results for 〈kT 〉 = 2.75GeV/c (parallel) events and blue triangles
are results for 〈kT 〉 = 2.5GeV/c (anti-parallel) events.
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difference weighted average

x−1
h 〈zt〉

√
〈k2

T 〉 (59 ± 49) MeV/c

〈zt〉
√
〈k2

T 〉 (48 ± 26) MeV/c

Table 7.2: Results of the x−1
h 〈zt〉

√
〈k2

T 〉 and 〈zt〉
√
〈k2

T 〉 differences for the PYTHIA
MC analysis.

This analysis on PYTHIA-simulated data indicates that our method and anal-

ysis are sensitive to
√
〈k2

T 〉 differences on the order of 250 MeV/c . The values for

x−1
h 〈zt〉

√
〈k2

T 〉 are not on the same order as the input, and the relation between the

two must be understood, although we have not attempted to calculate
√
〈k2

T 〉 from

our data analysis, which can be done using data from ISR[22], which may not be as

straightforward as indicated.
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Conclusion

8.1 Conclusions from Results

As a general conclusion, we can say that this analysis has accomplished two things:

• Within the framework of a classical model, the hypothesis by M. Ta-Chung,

that if POAM exists, a mean
√
〈k2

T 〉 difference will also exist betweeen parallel

and anti-parallel helicity events.

• The method of two-particle azimuthal correlations for measuring kT shows

promise when applied to the seperate helicity data sets for purposes of mea-

suring the difference between the two sets.

Though limited statistically, the results presented in Chapter 6 bear this state-

ment out. A net effect in the difference between the 〈zt〉
√
〈k2

T 〉 for parallel and

anti-parallel helicity events is measured. The effect is not large; most bin results,

although positive, are compatible with zero within their error bars. Several show a
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1σ effect. Just as important is to note that within error bars the quantities mea-

sured for all events (parallel and anti-parallel helicities combined), fall between the

measured quantities for the separated helicity combinations (see Section 6.4).

Certainly these results indicate that with more statistics and better polarization

this same method may reach a sensitivity sufficient to see POAM effects. The need

for more statistics is obvious since that will reduce the statistical error bars. The

advantage of better polarization is that it will enhance the difference between the

two event sets.

We have purposefully avoided making any direct claims as to the amount of

POAM we are measuring for several reasons:

• Extracting
√
〈k2

T 〉 from 〈zt〉
√
〈k2

T 〉 requires some modeling to determine 〈zt〉

and increases the error bars. This has been done in the case of non-spin sorted

analyses[22] where
√
〈k2

T 〉 is the desired end. In our case as POAM is the final

objective, it presents no real advantage so long as the two next points have not

been resolved.

• It is believed that POAM is the main contributor to the asymmetry in the√
〈k2

T 〉 for different helicity states, however, it may not be the only contributor,

and more theoretical work is needed to determine more precisely how much of

the effect can be attributed to POAM.

• Even if if POAM is the only contributor to
√
〈k2

T 〉 asymmetry, we still have no

way to determine POAM quantitatively from ∆
√
〈k2

T 〉.

Regardless of how much POAM contributes to the asymmetry in
√
〈k2

T 〉, the effect

is only a fraction of the effect that would be measured if the two beams of protons

were completely polarized. In Run3pp the average polarizations were 27% for each
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beam, giving us an attenuation factor of:

PB · PY ≈ .27 · .27 ≈ 1

13.7
(8.1)

For polarizations of 50% in both beams for Run5 this would enhance the differ-

ence by a factor of 3.5.

Note that we could have shown the results of Fig. 6.4 and Fig. 6.6 augmented by

1/PBPY to estimate the difference for complete polarization. We have chosen not to

do so for the reasons mentioned above. The error bars would have to be adjusted

accordingly and the uncertainty on the polarizations would have to be taken into

accunt.

8.1.1 Centrality Determination

The attempt in Section 6.6 to find a correlation with centrality is important

although far from conclusive. Until now there has been no possibility of determining

centrality with any certainty. While such determination is still unlikely on an event-

per-event basis, if POAM does exist and the measured effect is corroborated by more

data, by associating lower (even negative)
√
〈k2

T 〉 asymmetries with lower impact

parameters as shown in Fig. 2.3 it may provide a feedback mechanism to work with

and compare to other possible centrality measurements. Our understanding of both

centrality and POAM may improve iteratively with each result.

Certainly we can see a qualitative and quantitative difference in the results for

higher bbc mutiplicity than for the two other bins. The lower, negative values of

x−1
h 〈zt〉

√
〈k2

T 〉 and 〈zt〉
√
〈k2

T 〉 fit with our näıve expectation of higher centrality and

lower impact parameter.
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8.1.2 Error Uncertainty

A discussion on the origin and values of the error bars is warranted. In this data

set we have shown that the unaccounted errors are small compared with the error

bars shown (see Section 6.5), which are statistical in nature, convoluted with the fit

error from the Correlation Function. It is not altogether clear that this will continue

to be the case as the statistics grow larger. As shown in Eq. (5.3) the error bars on

the extracted quantities as well as the fitted quantities depend on the accuracy of

the fit. If the hypothesis of two Gaussians plus a constant is not a good one, the

error bars will remain undiminished in spite of larger statistics. In order to improve

the accuracy of the results a better understanding of the physical causes of deviation

from the fit will be necessary.

8.1.3 Simulation

There is much room for more simulation to better understand the interplay between

POAM and measured results. The model used in Chapter 7 is a simple classical

model. An upgrade to a quantum model, where the interacting parton would have

probability determined L = 0, 1, 2... values would make more physical sense.

The introduction of flavor-dependent POAM models is desireable, and would

contribute to our understanding. In particular a model with no net Lq would give

an estimate of the minimal effect on ALL measurements (see Appendix C).

Another obvious improvement would be to extend the simulation to run through

PISA, to verify that detector efficiency doesn’t affect the measurement of the asym-

metry, and to help understand the origin of non-Gaussian peak features.
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8.1.4 General Remarks

Several general remarks can be made regarding the POAM contribution to the

proton’s spin as it now stands:

• A more synthetic approach to the relationship between the measurement of

spin contributions and POAM contributions is necessary (for a specific exam-

ple of interdependence see Chapter C). All asymmetries must be included in

a complete description of the proton including the CNI polarimeter asymme-

tries as well as the neutron asymmetry used to measure polarization locally at

PHENIX. Included in this long term all inclusive iterative process is a character-

ization of collisions and POAM as a function of impact parameter, presumably

by GPDs.

• Originally it seemed that the spin crisis was an ideal opportunity to use the

proton to discover more about QCD. As things evolve it seems more likely to be

that we are using QCD probes to discover more about the proton. The complex

relationships at work mean that many more measurements are required, and

in the most broad pT and rapidity ranges possible.

• The processes that are used currently are mainly from gg or qg interactions.

At higher pT we see a larger qq channel contribution. This is more interesting

because we might expect some ~L+ and ~L− (POAM due to positively charged

quarks and negatively charged quarks, respectively; see Section 2.6) even if

there is no net POAM. We also expect a correlation between the charge of the

associated particle and the flavour of the colliding quark.

• Interestingly, one of the original considerations for the necessity of introducing

a new, color, quantum number was the fact that the proton is a stable hadron,

in fact, the only stable hadron. It was assumed to be in a ground state and that
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its valence quarks must be in a l = 0 state and must therefore be differentiated

because of Pauli’s principle by something other than orbital angular momen-

tum. Of course there are many other solid theoretical and experimental reasons

to believe that quarks have color, so a discovery of orbital angular momentum

would in no way call into question the fundamental principles of QCD or the

existence of color. It could raise interesting questions concerning the the nature

of spin: e.g. what happens with a spin-3/2 particle? Does the additional spin

come from valence quark spin, or from additional orbital angular momentum?

8.2 Future Measurements at RHIC

The RHIC spin program is constantly preparing new venues to explore the mysteries

of the proton’s spin. Several future projects include:

• Forward calorimeters existing at STAR and being installed in PHENIX will

enable AN in the forward region.

• In the long term, electron cooling will enable increased luminosity to measure

Drell-Yan (qq̄ → ll̄)

• Installation of a Silicon Vertex Detector (SVX) at PHENIX will enable sec-

ondary displaced vertex resolution for identification of D-mesons and B-mesons

as well as W-bosons. This will enable better azimuthal asymmetry measure-

ments because of less fragmentation.

8.2.1 ∆G from DD̄

With the installation of a new Silicon Vertex Detector (SVX) an analysis similar

to the one described in Appendix B can be done. The near 4π coverage in charged
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track detection will enable the identification of secondary vertices, including those

corresponding to D-mesons. The distance from the primary to the secondary vertex

which correlates to the lifetime of the decaying particle can be measured as well as

its position.

An azimuthal correlation between the DD̄ pairs will provide a much more accu-

rate estimation of the kT shift. Moreover the ALL measurement will also improve

significantly because of much better decay particle identification, thus improving the

signal to background significantly.

In principle we will obtain great ALL and azimuthal correlation measurements.

Two caveats should be mentioned:

1. The interdependance of ∆G and LG must be understood. Unless one of these

has a value of zero in the observed range, there will be some element of ∆G

that will affect the asymmetry nominally ment to measure LG, and vice versa:

certainly the cross-section for cc̄ production from gg fusion might depend on kT

or simply on
√
s and not just on the spin of g. Even if one of the two is measured

to be zero it does not guarantee that that is the case (see Appendix C).

2. The production mechanism of open charm (or J/ψ) is poorly understood. It

may be that we may learn more from these measurements about heavy quark

content and production than about gluonic contributions to the proton’s spin.

Even the simulations available to us currently have recourse to unorthodox

mecanisms to emulate charm production. PYTHIA uses the ”beam drag”

method to simulate charm production, whereby it accelerates a created charm

quark by dragging it behind another consituent parton.
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8.2.2 Drell-Yan

Since the Sivers function is process dependant, by selecting a particular kind of

process, an attenuated or even different left-right single spin asymmetry should be

observed.

This is the theoretical prediction for the Drell-Yan channel: it is the reverse of

the semi-inclusive deep inelastic scattering (SIDIS) of a lepton off a polarized proton

(Fig. 8.1). While the SIDIS has no final state interaction, the Drell-Yan channel has

no initial state interaction and the processes are symmetric.

The biggest problem with measuring this effect is the small cross-section for Drell-

Yan. It has been calculated that only with the increased luminosity due to electron

cooling, projected to be installed 2010, will there be sufficient data to analyze in

this channel.

The anticipation of such a reverse asymmetry is such that a plan for the building

of a dedicated Drell-Yan detector to be installed at another interaction region on the

RHIC ring is receiving strong consideration.

8.2.3 Forward Rapidity Sivers

Jet-jet azimuthal correlation studies from transversely polarized protons have a

distinct advantage in that the absolute direction of kT from POAM is known to be

perpendicular to the spin direction and the beam direction. This enables a much

easier extraction of the desired variables. This is the principle behind the future

(2006) AN measurements in RHIC. Because the detection regions of choice for this

experiment are in the spin direction, positive and negative, PHENIX will attempt to

rotate the beam direction by 90◦ on its side in order to align polarization direction

with detector acceptance.
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Figure 8.1: Drell-Yan diagram. The left-right asymmetry for Drell-Yan is predicted
to be the opposite of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) symmetry
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Polarimeter Proposal

A.1 AGS/RHIC CNI (Coulomb-Nuclear Interfer-

ence) Polarimeters

A.1.1 Introduction

Polarimetry of proton beams with energies higher than about 30 GeV poses a

difficult challenge. The Analyzing Power of only a few reactions have been measured

so far [66, 67], and the value of the Analyzing Power is typically small. For a suc-

cessful spin physics program at RHIC we need two different polarimeters. During

the 2002 run (Run2), a p+C CNI polarimeter provided a fast (∼1 minute) measure-

ment of the beam polarization in each ring, but with large scale uncertainties in the

Analyzing Power, set by a previous measurement at the injection energy (E950, see

Section A.1.2). This uncertainty is acceptable for tuning purposes, providing a good

relative measurement of the polarization. However, to get ∆G to the accuracy de-

sired, the beam polarization needs to be known to ∼5%. In order to accomplish this

at the full RHIC energy, an absolute polarimeter with a polarized target is needed.

126



Appendix A. Polarimeter Proposal

A polarized hydrogen gas-jet polarimeter was installed for Run5. This experiment

will measure the p+p Analyzing Power using the known target polarization and thus

extract the beam polarization to better than 5%. This will then be used to calibrate

the p+C CNI polarimeters to that accuracy, providing fast, absolute and accurate

measurements. The proposal we made was to solve the problem of measuring po-

larization accurately in the time between Run2 and Run5. For this we planned to

use an experiment similar to E950 in tandem with an extracted beam frozen spin

polarimeter in the AGS.

A.1.2 AGS E950 Results

E950 tested the use of small angle 12C(p,p)12C elastic scattering for polarimetry at

RHIC. Elastic scattering in the small angle CNI region (−t = 0.003− 0.04(GeV/c)2)

is predicted to have a calculable Analyzing Power of about 2-4% [68, 69], as well as a

large cross section over the whole RHIC energy range from 25 GeV to 250 GeV . A

carbon ribbon target was used for the high luminosities required for fast polarization

measurements. A ribbon target (5µ wide · 3.7µg/cm2 thick · 3 cm long) allowed

for the low energy carbon recoil to escape the target with minimal energy loss as

well as possible measurements of the polarization profile of the proton beam. The

sizeable Analyzing Power, the large cross section, and the advantages of a ribbon

target makes this process ideal for a fast primary polarimeter for RHIC.

The AGS E950 collaboration finalized its results [70]. The data from this experi-

ment determine the analyzing power of the p+C elastic scattering reaction based on

the beam polarization measurement of a simultaneously running external beamline

experiment, E925 [71].
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A.1.3 Solid Polarized Target Calibration Experiment

During the Run2 proton run at RHIC, the maximum polarization measured in the

AGS was approximately 25%, although measurements at injection to the Booster at

200 MeV showed ∼80% polarization. Because of the failure of the Siemens motor-

generator, the AGS ramp rate was significantly slower and the depolarizing effects

from resonances were greater. In order to avoid these effects, accurate AGS polar-

ization measurements as a function of energy are crucial. In principle, the new AGS

polarimeter can measure the polarization during the ramp, providing information

on the change in measured asymmetry during acceleration. However, because the

physics Analyzing Power is unknown throughout most of the AGS energy range (3

GeV to 24 GeV ), only sharp changes in the beam polarization will be discernable

from the unknown changes in the Analyzing Power.

We proposed to measure the p+C CNI Analyzing Power as a function of energy

from the AGS injection energy to the RHIC injection energy via an internal p+C CNI

polarimeter in the AGS (to measure the p+C CNI asymmetry) and an external p+p

experiment with a solid polarized ammonia target (to measure accurately the beam

polarization) analogous to the E950-E925 set-up previously discussed (Section A.1.2).

In addition to calibrating the internal polarimeter over the range of AGS energies,

this experiment could make a very precise measurement at the RHIC injection energy.

Because the E950 results relied on beam polarization measurements extracted

from a p+p experiment, which in turn relied on asymmetry measurements from pre-

vious experiments with large error bars, the systematic uncertainty of the Analyzing

Power for the p+C CNI reaction was determined to be ∼20%. Although this is the

best measurement to date, and is sufficient for tuning and commissioning of the RHIC

polarimeters, it is insufficient for the spin physics program at RHIC. Of course, even

if the Analyzing Power were well determined at the RHIC injection energy, it most
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probably has an energy dependence that is theoretically not well understood. There

are, however, some ideas on determining the Analyzing Power more acccurately at

100 GeV without the polarized gas-jet target. One option discussed is to measure

the asymmetry before and after acceleration, and then ”down-ramp” back to injec-

tion energy and re-measure the asymmetry where the Analyzing Power is known.

If this is carefully done, the polarization losses (if any) during the acceleration and

deceleration processes should be the same, and any decrease in the measured asym-

metry would be twice the decrease during acceleration. This method could determine

the Analyzing Power at 100 GeV , albeit with systematic uncertainties which would

probably be large compared to the desired 5% level. However, it would allow an

absolute polarization measurement independent of theoretical analysis of the energy

dependence. If this method were to work, the limiting factor in the knowledge of

the polarization may well be the uncertainty of the Analyzing Power determined by

E950. A decrease in this uncertainty from 20% to a possible 5% would be strongly

desired, especially if the upcoming spin run is successful in generating interesting

results.

A.2 Measuring Polarization

In order to interpret measurements made by the various detectors into spin related

quantities, an accurate measurement of the beam polarizations must be made. Po-

larization measurements not only supply the final number to be used in analyses but

if taken at various stages of the full accelaration chain, give important feedback to

the accelerator physicists and improve understanding of polarization losses. Therfore

there are polarimeters placed between the LINAC and the Booster, in the AGS ring

and in the RHIC ring itself.

The principle of polarization measurement is rather simple, but unfortunately
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somewhat circular: compare a measured asymmetry with a known physics asymme-

try to deduce polarization using Eq. (3.1).

In practice the asymmetry Ax is measured by:

Ax =
N++ −N+−

N++ +N−−
(A.1)

where N++ is the number of detected particles in a certain configuration (in this

example: parallel helicity events) and N+− is the number of detected particles in a

different configuration (in this example: anti-parallel helicity events). This formula

can be modified to adapt to all asymmetry measurements (see Section 3.2.2).

Two different types of targets are used currently at RHIC:

• polarized hydrogen gas jet targets. Since the hydrogen gas jets are of low

density and have a low cross-section, they are able to run in the same ring

(RHIC or AGS) without damaging the beam. The x process is pp.

• Carbon targets. Here x is pC.

Unfortunately, to obtain the original physics asymmetry ax, a similar previous

experiment must be performed where this time the unknown is the ax while the

polarization P is the known quantity. To break from what appears to be a vicious

circle, fixed target experiments, so called ”frozen spin”, are used to determine the

physics asymmetries. In these experiments an unpolarized beam is used upon a

polarized target.

The idea is to run such an experiment in the AGS on a extracted beam line

in conjunction with another polarimeter in the AGS ring similar to E950. The

polarimeter on the extracted beam would be a ”frozen spin” target, i.e.: frozen NH4

with the H nuclei polarized and the target kept cold. The advantage here is that the

130



Appendix A. Polarimeter Proposal

polarization of the target can be measured extremely precisely, and therfore the beam

polarization can be measured precisely. The following steps diagramed in Fig. A.1

outline the method to measuring polarization at RHIC:

1. Using non-polarized p beam on polarized p target on the extracted beam po-

larimeter (polX), the pp asymmetry (App) is measured using Eq. (A.1).

2. The polarization of the frozen spin (Ppp) is known accurately and the Analyzing

Power (app) of polX is calculated using Eq. (3.1).

3. Using polarized beam into the AGS, data (ApC) is taken at the AGS (E950)

polarimeter.

4. The polarized beam is dumped into the extracted beam.

5. Using the Analyzing Power (app) obtained from (1.) the polarization of the

beam (P ) is calculated using a new set of data (App) measured in the extracted

beam by the frozen spin polarimeter, now in a non-polarized state.

6. The data obtained by the AGS polarimeter (3.) is analyzed using the polar-

ization (P ) obtained from the frozen spin polarimeter, and the p+C Analyzing

Power (apC) for the E950 polarimeter is calculated using Eq. (3.1) to within

5%.

7. The p+C Analyzing Power (apC) is now used by the RHIC CNI polarimeter to

measure the polarization in RHIC, or by the same E950 polarimeter to measure

the polarization in the AGS.

The utility of such an experiment is limited by the fact that the Analyzing Power

(apC) is energy dependent. While we could measure the value of the Analyzing Power

in the AGS range (3-24 GeV ) we would still be dependent on correct extrapolation

of those results to the RHIC range (100-250 GeV ) which carries more uncertainty.
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Of course, this added uncetainty already exists for the current polarization measure-

ments.

RHIC

PHENIX

pC CNI

(pC CNI) E950

 pol4NH

AGS

LINAC a. A = P a
b. A = P a

c. A = P a

d. A = P a

Figure A.1: Measuring polarization at RHIC. This diagram shows the location of the
different polarimeters involved in the new proposed polarimetry experiment. Except
for the extracted beam frozen spin polarimeter, the polarimeters are all already in
place and in use.
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A.3 Proposed Polarimeter Study

A.3.1 Principle

The principle behind the proposed polarimeter is to measure the asymmetry in

the elastic scattering of protons.

The elastic collision between the incoming proton and the Hydrogen in the NH4

target constrains the kinematics such that there is only one free parameter:

sin θR ≈
(

1 +
mP

pbeam

) √
|t|

2mP

(A.2)

where mP is the mass of the proton θR is the angle of the trajectory of the recoil

proton, t is the Mandelstam parameter given by:

t = −2mpER (A.3)

proportional to the recoil energy (Fig. A.2). The energy and angle of the recoil

proton are also correlated, as are the energy and angle of the scattered proton. By

measuring one of the variables we can measure the elastic scattering signal. By mea-

suring both, we eliminate some of the background. By measuring more kinematical

variables which are all interdependent in elastic scattering, we increase the signal to

noise ratio. In other words, by over-constraining we should be able to identify elas-

tic scattering events. The maximum asymmetry for CNI p+p scattering has been

measured at a t range of 0.22 - 0.38 GeV 2/c2. The corresponding ranges for θR and

ER are given in Table A.1.
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R, ERθ

S, ESθbeamp

Figure A.2: Elastic scattering kinematic variables

variable range

t (0.22 - 0.38) GeV 2/c2

θR 13 - 15 ◦

ER 110 - 170 MeV

Table A.1: Kinematic variable range for CNI elastic scattering

134



Appendix A. Polarimeter Proposal

A.3.2 Experimental Setup

The plan for the experimental setup was to fit the frozen spin target from the

University of Virginia [72] used for previous experiments and encase it in an Alu-

minium can connected to the beam to maintain vacuum around the experiment.

The Aluminium container would be fitted with windows in the forward and recoil

directions.

The detectors would be either silicon strip or scintillator hodoscopes with good

position resolution in the side(recoil) direction. In the forward direction, calorimeters

would be used to measure the energy and could be combined with silicon detectors

placed in front. In order to get good angular discrimination, the forward detectors

would be placed downstream 10 - 20 m.

This polarimeter was proposed in June 2002 before the RHIC Spin Collaboration,

Fig. A.3 shows the GEANT generated schema of the extracted beam polarimeter.

A.3.3 Simulation

We used GEANT generated Monte Carlo events to simulate detector response

and to optimize signal to background ratios by experimenting with different detector

combinations. In addition to the silicon recoil detectors, forward detectors with

hodoscopes and calorimetry were used in simulation.

The time of flight of the detected protons in the silicon detectors is shown in

Fig. A.4. The simulated times are well below the threshold necessary to ensure

discrimination between bunches, which come every 330 ns. The signal events lie

within the blue box area, which enables a time of flight cut at the red line to reduce

background.
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Figure A.3: (top) Top view of polarimeter. The outer circle is the Aluminium
container, the sectioned inner circle is the actual frozen spin polarimeter that contains
the target. The blue line is the forward scattered proton in an elastic scattering event,
and the red line is the recoil proton. The path of the recoil proton intersects two
silicon detectors.(bottom) Side view of polarimeter. Both the forward and recoil
proton are now represented by red lines. The windows in the Aluminium can can be
seen as well as the forward detectors.
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Figure A.4: Polarimeter time of flight in the side silicon detectors. The red line
represents a background cut. The signal events are located within the blue box,
whose width is determined by the kinematics of elasctic scattering. The large peak
at low time consists of charged pions.

Fig. A.5 shows the coincidence events which record a hit in the left forward and

right side detectors. The background, though relatively small is still present. The

line represents the signal events. Since the signal has only one free parameter, the

events show a definite correlation between measured kinematic quantities. Because of

the strong correlations, we showed that rather than have two layers of side detectors,

it would be more efficient to have a collimator in front of a single side detector.

Fig. A.6 shows that by over-constraining we can eliminate more background.

First we plotted recoil energy versus recoil angle, where we saw a definite separation

between signal and background. Because elastic scattering conserves kinetic energy,

137



Appendix A. Polarimeter Proposal

Recoil Angle (deg)
20 40 60 80 100 120

S
ca

tt
er

ed
 A

ng
le

 (d
eg

)

-2

-1

0

All Coincidence Hits

Figure A.5: φ− φ correlation. The signal events show a strong correlation between
kinematic quantities as evidenced by the visible line.

the forward protons should have nearly all of their initial energy. In the forward

energy versus recoil angle plot, the separation between signal and background is

even more obvious.

The new forward energy background cut Ef > 22.9 GeV is applied in Fig. A.7,

with the same measured quantities as in Fig. A.5. The background is completely

eliminated. A more advanced study to account for background from sources other

than interactions with the target would be necessary to complete a signal to back-

ground estimate. Nevertheless, we can say that silicon recoil detectors which measure

position and timing coupled with collimators on the sides, combined with forward

hodoscopes (for position) and calorimeters (for energy) show good background rejec-

tion.
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Figure A.6: Over-constraining. (left) shows recoil angle plotted versus recoil energy
and a separation between signal and background events. (right) shows recoil angle
versus forward energy and an even more distinctive background cut.
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Figure A.7: φ − φ correlation with forward energy cut: Ef > 22.9 GeV . The
background is completely eliminated.
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A.4 Proposal Conclusions

To calculate the run time required for our study we considered the following values:

• The AGS would deliver bunches of 1.20 · 1010 protons per spill

• One spill comes every 4 s.

• Our target has 2 · 1023 atoms

• Luminosity is then:

L = 1.2 · 1010 × 1/4× 2.0 · 1023 = 6.0 · 1032cm−2s−1 (A.4)

• Our event rate would then be:

N = L · σ(5.0 · 10−27) · acc(0.01) · eff(50%) = 5000 evt s−1 (A.5)

We would need 1 week (21 shifts) of runtime to collect data. In addition to which

we would need 2 weeks for tuning and testing etc.

Our proposal was not accepted, in large part because it was deemed to be a

considerable financial effort for such a limited time, knowing that the RHIC gas-jet

polarimeter would be installed for run5.
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∆G Measurement from Open

Charm Decay Coincidence Events

B.1 Introduction

This appendix details an attempt to measure ∆G, the gluon contribution to

the proton’s spin, through the measure of the asymmetry of eµ (and other) coin-

cidence events from open charm decay. At relatively low pT , it is believed that

open charm production in p+p collisions is dominated by gluon-gluon fusion (see

Fig. B.1). Therefore, one has but to determine the number of open charm events for

both parallel and anti-parallel collisions to obtain a measure of ∆G. The measured

asymmetry ALL is related to ∆G by:

Acc̄LL (x1, x2) =
∆G

G
(x1)

∆G

G
(x2) a

gg→cc̄
LL (B.1)

where ∆G
G

(x) is the gluonic contribution to the proton’s spin for a gluon with

momentum fraction x, agg→cc̄
LL represents the theoretical asymmetry in cc̄ production
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from gluon-gluon fusion, and Acc̄LL the measured asymmetry in cc̄ production from

polarized p+p collisions. The equation for agg→cc̄
LL is given by:

agg→cc̄
LL =

σ→→
gg→cc̄ − σ

→←
gg→cc̄

σ→→
gg→cc̄ + σ→←

gg→cc̄
(B.2)

Here we see that aLL is the normalized difference of partonic cross-sections. The

cross-sections are calculated to NLO [73] for gg → cc̄ for two spin configurations:

when the gluon helicities are parallel (→→) and when the gluon helicities are anti-

parallel (→←). The equation for Acc̄LL is:

Acc̄LL =
σ++ − σ+−

σ++ + σ+− (B.3)

where σ++ and σ+− are the cross-sections of a specific reaction channel (here open

charm production) when the protons have parallel (++) and anti-parallel (+−) he-

licities, respectively. The strength of this asymmetry depends on how correlated the

gluons’ polarization is compared to the proton’s (Eq. (B.1)). Practically, since the

cross section can be written by experimental yield (N) divided by integrated lumi-

nosity (L̂) and overall efficiency (ε) and ε can be assumed to be helicity independent,

we use:

Acc̄LL =
1

PB · PY

N++ −RN+−

N++ +RN+− (B.4)

where:

• PB and PY : the polarization of the blue and yellow beams, respectively.

• N++ and N+− are the number of signal events measured when the the beam

helicities are parallel (++) or when the beam helicities are anti-parallel (+−),

respectively.
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• R: the relative luminosity

R =
L++

L+−
(B.5)

• L++ and L+− are the parallel helicity and anti-parallel helicity total luminosi-

ties, while PB and PY are the polarizations of the two beams, blue and yellow.

For Run3pp the values used are:

PB = PY =
√
PB · PY ≈ 27% (B.6)

R =
L++

L−−
≈ 97.25% (B.7)

Complications are inevitable when moving from theory to practice, in this case

some of the complications are as follows:

• cc̄ quarks are not the end particles, they fragment with other quarks to form

charmed hadrons such asD mesons or Λc baryons. These in turn decay strongly,

weakly or electromagnetically into stable particles that are produced copiously

through other production channels, thus creating the problem of being able to

distinguish signal from background.

• In Eq. (B.1) ∆G/G is a function of the momentum fraction x of the interacting

parton. The ALL that we seek to ascertain is a function, not a value, and

relating final state particles to intial state variables is complicated.

• The factor ∆G/G appears twice in ALL, it is the product of the contribution

from the two interacting gluons.
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Figure B.1: Schematic diagram of the main LO process in open charm production.

The primary utility of these analyses becomes clear by examining Eq. (B.1). The

asymmetry is a function of the momentum fraction values of both interacting gluons.

By detecting a decay particle corresponding to one of or both of the two gluons we

can make better comparisons to the different models (Fig. B.3), knowing from Pythia

simulations that there is a strong correlation between the type of particle detected

and the momentum fraction of the gluon, due simply to the detector acceptance for

the different particles (Fig. B.2) in PHENIX. This also underscores the need for ALL

measurements from different decay channels, as they will probe different x regions

of the ∆G/G models.
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Figure B.2: Gluon momentum fractions in log scale for eµ coincidence events. (left)
gluon momentum fraction for gluons that decay to muons that are within PHENIX
muon acceptance. (right) gluon momentum fraction for gluons that decay to elec-
trons that are within PHENIX electron acceptance. The different values reflect the
PHENIX acceptance for the different leptons and not any physics processes.

Figure B.3: x · ∆G plotted as a function of x from NLO calculations for various
models
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B.2 Methodology

The idea of coincidence event studies is to improve upon the signal to background

ratio; the disadvantage is that it decreases the statistics available for study. We are

therefore looking for a coincidence signal from open charm decay that has, if possible:

• Good signal to background

• High statistics

• Low theoretical uncertainty

To consider the different coincidence signal possibilities, we look for the different

possible decay channels. We are interested primarily in semi-leptonic decay modes,

as PHENIX is designed to detect electrons, muons and photons, with a limited

amount of particle identification for hadrons (TOF). From PYTHIA, we know that

cc̄ pairs hadronize into D mesons 99.5% of the time, with the constraint that the

final state particles be leptons within PHENIX acceptance. In turn, the D mesons

(D0, D̄0, D+, D−) decay along various different channels. Some branching ratios in-

clude:

• D0 → e+ +X(7%)

• D0 → µ+ +X(7%)

• D+ → e+ +X(17%)

• D+ → µ+ +X(10%)

• D0 → e+ +K− +X(5%)

• D+ → e+ +K− +X(4%)
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We could detect e±µ∓ pairs, e±K±, or e±K∓. The opposite sign eK pairs would

come from the same D meson, while the same sign eK pairs would have each particle

decay from a different D meson. The muon arm momentum acceptance would make

it impossible to detect a µK pair from the same meson, but µ±K± from 2 different

D mesons is possible.

A look at PYTHIA generated open charm production from p+p collisions with

generic PHENIX acceptance cuts would help us determine what the best signal might

be. The results are shown in Table B.1.

Mode Produced Accepted %

e±µ∓ (emu) 695M 957K 0.1

e±K± (elk) 485M 5.3M 0.4

e±e∓K± (eek) 847M 222K 0.03

e±µ∓K∓ (emuk) 2.35G 477K 0.02

Table B.1: MC acceptance modes

We see that asking for three particles would severely limit our statistics. Although

electrons are relatively easy to come by, both muons and Kaons have a rather limited

PHENIX acceptance, muons from a kinematic standpoint pµ > 2.2GeV/c and Kaons

from a geometrical standpoint (they can only be identified in the TOF). The two

most promising candidates are the eµ (emu) and the eK (elK). The advantage of

eµ is that both single electron and single muon studies from open charm decay are

currently underway and we can refer to both working groups for cuts and analysis

techniques.
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Nevertheless, there are important differences between our study and the single

lepton analyses. For the single lepton studies which rely on statistical methods to

determine signal, any electron (respectively, muon) that originates from an open

charm decay is considered signal, regardless of the decay process. In our analysis, for

there to be correlations between the detected particles we only consider leptons and

Kaons that originate exclusively from semi-leptonic D meson decay. This means our

signal number is somewhat shrunk again and that a contribution from open charm

exists in our background asymmetry.

The theoretical improved signal to background cannot be proved, because unlike

the J/ψ study, we cannot detect all decaying particles and reconstruct the D meson

masses; we can only estimate our signal to background ratio by calculating the

number of eµ events Eq. (B.8). Using the same cuts as developped by the Single

Muon and Single Electron Working groups (Table B.2), the number of coincidence

events is determined and compared to the number of open charm events calculated

from the formula:

N = L · σpp̄→cc̄X · Γcc̄→DD̄ · ΓDD̄→eµ · εeµacc · (εereco · εeacc)CNT · εµreco (B.8)

where:

• L : Collected Luminosity. Includes down time and vertex cut losses. Collected

for Run 3: 300 nb−1.

• σpp̄→cc̄X : Cross-section for pp̄ to cc̄. Value used: 644 µb as measured by

PHENIX.

• Γcc̄→DD̄ : Branching ratio for cc̄ pair to DD̄ pair. Calculated using 4M Pythia

events: 99.5%, when constrained by PHENIX geometric and kinematic accep-

tance for leptons.
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Electron Muon

EMC dphi sigma < 3 no ghostflag

EMC dz sigma < 3 No Muon Tracker Hits ≥ 12

energy/momentum ratio cut < 2.5 Track Chi Square < 20

fiducial cuts No Tracks Cut ≤ 10

No RICH Hits > 3 No Muon ID Hits ≥ 7

BBC vertex Cut ≤ 20 BBC vertex Cut ≤ 20cm

Table B.2: Muon/Electron Working Groups particle ID cuts

• ΓDD̄→eµ : Branching ratio for DD̄ pair to eµ pair. Calculated using 4M Pythia

events: 1.67%.

• εeµacc : Acceptance of eµ pairs. Percentage of eµ pairs that fall into geometric

and kinematic range of the muon detector and the central arm acceptance ·

efficiency study for the central arm (see next item). Using the following cuts

for the 4M Pythia events, we obtained: 7.56% for (Selection 1 and Selection

2), 1.91% for Cut Selection 2 Only (see Table B.4).

• (εeacc · εereco)CNT : Electron acceptance·efficiency in the Central Arm. Value

taken from PPG037: 3% for Selection 2, and 2.4% for Selection 1.

• εµreco : Muon Arm efficiency. Standard value from Single Muon Working

Group: 70%.

The number of eµ coincidence events from open charm decay is given in Table B.3
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Run Luminosity eµ events eµ events
(pb−1) (epT > 0.4 GeV/c ) (epT > 0.8 GeV/c )

Run 3/Run 4 0.3 817 248

Run 5 10 27258 8263

Table B.3: Number of eµ coincidence events from open charm

The statistical relative error on ALL is given by the formula:

δALL

ALL

=
1

PB · PY ·
√
N

(B.9)

which, considering the number of calculated eµ coincidence events in Run3pp

is very large, especially considering that our N can only get smaller as we explore

phase space correlations. At best for Run3 we can obtain a qualitative feel for an

asymmetry. Then there are other sources of uncertainty, such as the uncertainty in

the polarizations which gives an additional:

δALL

ALL

∼ 60% (B.10)

B.3 Analysis

The first step is to compare our single muon pz spectrum with that of the single

muon asymmetry studies [74]. The cuts used by the single lepton groups and our

analysis are given in Table B.2, and the comparison of our single muon results to

those shown previously is shown in Fig. B.4.
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Selection 1 Selection 2

Pµ > 2.1 Gev Pµ > 2.1 Gev

1.2 < |ηµ| < 2.4 1.2 < |ηµ| < 2.4

0.4 < Ptel < 0.8 Ptel > 0.8

|ηe| < 0.5 |ηe| < 0.5

Table B.4: MC acceptance cuts

By using PYTHIA generated Monte Carlo eµ events from cc̄ production, we

looked for phase space correlations.

The first consideration was that the momentum acceptance for the muons made

it extremely likely that the muon direction was related to the decaying D meson
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Figure B.4: Muon momentum distribution. (left) for single muons, (right) for muons
in eµ cincidence events.
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direction. This was confirmed in PYTHIA simulation (Fig. B.5).
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Figure B.5: Angular deviation in degrees of lepton from parent D-meson for (left)
muons, and (right) electrons (pT> 0.7GeV)

The distribution of the angle between the leptons is indicative of the geometrical

acceptance of the PHENIX detectors and the momentum fractions of the interacting

gluons, and therefore the z-component of the detected lepton momenta. By looking

exclusively in the transverse plane, a more back-to back correlation is observed in

PYTHIA. By adding the cut on the pT of the electron, pT > 0.7 GeV/c (used in the

fiducial cuts to identify the electron in the data), we introduce a stronger correlation.

Because of a smaller spread in the decay angle from the D meson to the electron. A

definite angular correlation in the pT -plane is observed, as shown inFig. B.6.

Whereas fully 52.5% of the pythia generated events show a δT angle between

leptons greater than 140 ◦(Fig. B.6), the data is relatively invariant with respect to

this angle, showing, if anything a fall-off at large angles.

Similarily, for electron-Kaon coincidences, angular correlations in the transverse

plane can be seen using PYTHIA Monte Carlo. Here there are two cases of interest:

the Kaon and the electron can decay from the same charmed hadron, in which case
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Figure B.6: Angular electron - muon separation in the transverse plane in degrees
for (left) PYTHIA simulated coincidences, and (right) in Run3pp data.

they will most likely be of opposite charge, or from the different charmed hadrons,

in which case they will most likely have the same charge. Using the cut pT>0.7 GeV

for both the electron and the Kaon we see the correlations shown in Fig. B.7. For the

Kaon coincidences, an additional problem factor arises. The central arm detectors
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Figure B.7: Angular electron - Kaon separation in the transverse plane. (left) e±K∓

from the same D meson. (right) e±K± from different D mesons.
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for PHENIX during run3 were not equipped for particle identification execpt in the

TOF, which covers only a small fraction of the phase space covered even by the

central detectors, thus making the analysis even more statistically challenging.

From the observed correlations we want to define a region in phase space where

there is a strong signal, and a region where there is none (or a very small signal).

We measure the asymmetries in the two regions, and using the estimated number of

signal events we deduce the signal asymmetry. This method introduces even more

uncertainty, as the uncertainty on each factor of Eq. (B.8) must be taken into account.

Fig. B.8 shows some of the more probing results.

The first figure shows a comparison of the number of eµ events in the case of like

sign leptons and unlike sign leptons. From our definitions of signal and from Monte

Carlo we know that our signal is almost completely unlike-signed. The second figure

(bottom left) shows a comparison of parallel and anti-parallel helicity unlike-sign eµ

events. The top right figure shows the number difference between these two and

the last panel shows the asymmetry. All of these are plotted as a function of the

angular separation between the electron and muon in the transverse plane (δT ). The

minimum pT requirements are muon pT > 0.8GeV/c and electron pT > 0.8GeV/c

The scale (in %) of the y-axis and the fluctuations give an idea of the order of

magnitude of the uncertainties. Asymmetry values are calculated for two angular

regions δT > 140◦ and δT < 90◦ for both like and unlike-sign pairs. The values are

shown in Table B.5.

The error bars shown in Table B.5 are only statistical. To those values, the scaling

error due to the uncertainty on the polarizations must be added (± 60 %), as well

as uncertainties due to the relative luminosity. The asymmetry values shown are a

mixture of signal and background asymmetries.
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Figure B.8: eµ coincidence event asymmetries. All plots are a function of angular
separation in the transverse plane.(1. top left) the blue line show like-charge eµ
pairs (background) and the red line shows like-sign eµ pairs (potential signal). (2.
bottom left) The blue line shows the number of like-sign parallel helicity eµ pairs,
while the red line shows the number of like-sign anti-parallel eµ pairs. (3. top right)
The difference between the two functions plotted in 2. is shown. (4. bottom right)
the asymmetry between the two functions is plotted.
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δT < 90◦ δT > 140 all eµ events

like-sign (-29 ± 49)% (19 ± 52)% (18 ± 22)%

unlike-sign (-66 ± 116)% (147 ± 428)% (-21 ± 26)%

Table B.5: eµ coincidence asymmetries

The size of the error bars precludes even the most cautious qualitative statement

concerning the significance of the results, and this is without attempting to extract

a value for the signal Acc̄LL. Knowing the number of expected signal eµ pairs and

the ratio of signal events in the two angle bins calculated using PYTHIA (Fig. B.6):

63.7% have δT > 140◦ and 7.8% are in the δT < 90◦ bin, we could in theory attempt

to extract Acc̄LL for our narrowly defined signal eµ pairs. The added systematic errors

due to the uncertainty for each factor in Eq. (B.8) would be very large. Moreover

this type of analysis only works if we can resonably assume that the background

asymmetry is constant. This is clearly not an assumption we can make in this.

The improved scale and statistical uncertainties commensurate with a larger data

set with better polarization, such as Run5, will not compensate for the inherent

problems mentioned above, and will not enable a reasonable estimate on Acc̄LL from

eµ (and other) concidence events.

A definitive analysis for ALL from open charm will have to wait until the in-

stallation of the silicon vertex detector, which with the ability to identify displaced

vertices as well as a near 4π coverage for charged tracks will enable the identification

of D mesons directly.
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Revisiting the π0 ALL

Measurement

C.1 Introduction

If POAM exists then its effects would manifest themselves in other measurements.

For example, POAM could contribute to the π0 ALL. It seems likely than such

effects would be minor compared to the ∆G contribution, just as other contributions

to the two particle azimuthal angle asymmetry are small compared to the POAM

asymmetry. Nevertheless, it is interesting to get an idea of the size of POAM effects

in π0 ALL, which we will do in this appendix by considering two origins of ALL

asymmetry from POAM:

1. The modification of parton-parton
√
ŝ.

2. An increase in π0 pT due to the kT kick.

157



Appendix C. Revisiting the π0 ALL Measurement

C.2 Modification of
√
s

As shown in Fig. C.1 (left), colinear proton collisions with PAOM can lead to

non-colinear partonic collisions. In addition to creating final state dependencies, this

will change the
√
s of the collision and may be different depending on the helicity

configurations. The principle of how this would create an asymmetry is shown in the

right panel of Fig. C.1:

colinear collision

non-colinear collision
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Tbk

ypyx
Tyk
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Figure C.1: (left) Colinear proton collisions with PAOM can lead to non-colinear
partonic collisions, which will modify the

√
s of the partonic collision. (right) The

difference in
√
ŝ resulting from non-colinear partonic collisions inside colinearly col-

liding protons due to POAM, results in a change of the π0 cross-section, because the
cross-section has a 1/s2 dependency. An increase in

√
ŝ, which we can consider equal

to a change in
√
s when calculating the cross-sectional dependence, results in fewer

π0 and the difference in
√
s on average between parallel and anti-parallel helicity

events would result in a difference in cross-section which would be measured as ALL.

Using the model assumptions developed in Chapter 7, we will examine the conse-

quences of a non-colinear partonic collision. The well-known relation between energy,
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mass and momentum for a relativistic parton with kT is:

E2 = ~p2 +m2 = x2p2
z + k2

T +m2 (C.1)

where E and m are the energy and mass of the parton, but pz is the momentum

of the proton, which is then modified by x. The partonic center of mass energy is:

ŝ = m2
1 + 2E1E2 − 2x1x2~p1 · ~p2 − 2~kT1 · ~kT2 +m2

2 (C.2)

We shall neglect the parton mass terms and incorporate them into the momenta

by setting pz = 100 GeV/c . This gives us
√
s = 200 GeV in the absence of POAM.

We will denote
√
s
∗

the POAM-modified center of mass energy and
√
ŝ = xBxY

√
s
∗

the POAM-modified partonic center of mass energy.

Eq. (C.1) becomes:

EB =

√
~k2

Bx + ~k2
By + x2

B

s

4
(C.3)

By factoring out x2
Bs/4 and using the binomial theorem, we obtain:

EB =
xB

√
s

2

1 +
2~k2

B

x2
Bs

 (C.4)

substituting into Eq. (C.2) gives us:

xBxY s
∗ =

xBxY

2

(
√
s+

2α2~s2
B

x2
B

√
s

)(
√
s+

2α2~s2
Y

x2
Y

√
s

)
− 2

(
~kB · ~kY − xBxY

s

4

)
(C.5)

The dot product of the two kT vectors depends on the helicity states. We re-

member from Section 7.3 that ‖~kB‖ and ‖~kY ‖ are proportional to ‖~sB‖ and ‖~sY ‖,

respectively (by a factor α), that the ~kB,Y vectors are related to the ~sB,Y vectors by
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the equation Eq. (7.13), and that the components of ~sB and ~sY can easily be broken

down as in Eq. (7.14):


parallel: ~kB · ~kY = α2

(
−(y0)

2 − (x0 + b
2
)(x0 − b

2
)
)

anti-parallel: ~kB · ~kY = α2
(
(y0)

2 + (x0 + b
2
)(x0 − b

2
)
) (C.6)

For the first term, we multiply out which gives us:

(
√
s+

2α2~s2
B

x2
B

√
s

)(
√
s+

2α2~s2
Y

x2
Y

√
s

)
=

(
s+ 2α2

(
~s2

B

x2
B

+
~s2

Y

x2
Y

)
+

4α4~s2
B~s

2
Y

x2
Bx

2
Y s

)
(C.7)

by substituting these results into Eq. (C.5), we obtain:


parallel: xBxY (s∗ − s) = k + 2α2

(
y2

0 + x2
0 − b

2

2
)

anti-parallel: xBxY (s∗ − s) = k − 2α2
(
y2

0 + x2
0 − b

2

2
) (C.8)

where:

k = 2α2xBxY

(
~s2

B

x2
B

+
~s2

Y

x2
Y

)
+

4α4~r2
B~r

2
Y

xBxY s
(C.9)

For mid-rapidity, we have xBxY ≈ x2
B ≈ x2

Y to first order, and we also have:

(
~r2

B + ~r2
Y

)
=

(x0 +
b

2

)2

+ y2
0 +

(
x0 −

b

2

)2

+ y2
0

 (C.10)

Knowing that:

xBxY (s∗ − s) = (xBxY )−1(ŝ∗ − ŝ) (C.11)
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we can substitute these last two equations into Eq. (C.8), which gives us:


parallel: (xBxY )−1(ŝ∗ − ŝ) = 4α2~r2

0 +
4α4~r2

B~r2
Y

xBxY s

anti-parallel: (xBxY )−1(ŝ∗ − ŝ) = α2b2 +
4α4~r2

B~r2
Y

xBxY s

(C.12)

We can write:

∆
√
ŝ = (

√
ŝ
∗
−
√
ŝ) =

ŝ∗ − ŝ√
ŝ
∗
+
√
ŝ
≈ ŝ∗ − ŝ

2
√
s

=
(xBxY )−1(ŝ∗ − ŝ)

2
√
ŝ

(C.13)

and finally:


parallel: ∆

√
ŝ =

2α2~r2
0√

ŝ
+

4α4~r2
B~r2

Y

xBxY s3/2

anti-parallel: ∆
√
ŝ = α2b2

2
√

ŝ
+

4α4~r2
B~r2

Y

xBxY s3/2

(C.14)

Note that the extra term is identical for both cases so the difference in the change

of
√
ŝ is given by:

δ
√
ŝ = ∆

√
ŝpar −∆

√
ŝanti =

α2

2
√
ŝ

(
4~r2

0 − b2
)

(C.15)

A change in
√
ŝ translates as the same change in

√
s, so from now on we will

use ∆
√
s =
√
s
∗ −
√
s. To simplify things further for Monte Carlo simulation, we

make the approximation that the momentum fractions are approximately equal in

the central rapidity region, as well as being approximately equal to xT . We used:

xB = xY = xT =
2pT√
s

(C.16)
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Figure C.2: ∆
√
s dependencies for parallel and anti-parallel helicity event simulation.

(top left) shows the change in
√
s (∆
√
s) for parallel helicity events at high pT plotted

versus the square of the interaction point vector, ~r0. (top right) A similar dependency
of ∆
√
s on b2 for high pT anti-parallel helicity events is apparent. (bottom left and

right) The same variables as in the top row are shown, but at low pT . We see that
the dependencies are smeared by the second terms in Eq. (C.14).
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We ran the 3-Dimensional Monte Carlo model with Woods-Saxon potential (with

a = 5fm) developed in Chapter 7 to randomly determine the impact parameter and

interaction point. We then calculate
√
s
∗

from Eq. (C.2) and Eq. (C.3) with the

appropriate kT values. The pT input value was varied in steps of 0.2 GeV/c from

0.8 GeV/c to 8.0 GeV/c and 10,000 events were generated per helicity combination

and per bin. Our results are shown in Fig. C.2 and Fig. C.3:

The dependencies on b2 and ~r2
0 are shown in Fig. C.2. Note that at low pT (small

x) we see the appearance of slight smearing due to the second term in Eq. (C.14).

The distributions for the change in
√
s values for parallel and anti-parallel helicity

events are shown in Fig. C.3. We take the mean value for every bin and calculate

the percentage deviation in the cross-section from the (unPOAM-altered)
√
s cross-

section for each pT bin, knowing that there is a s−2 dependency [22]:
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0

100
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 = 1.0 GeV/cT Distributions, ps ∆

(MeV/c)

anti-parallel

parallel

Figure C.3: ∆
√
s distributions for pT = 1.0 GeV/c . The distributions for the two

different helicity states are quite different. The vertical lines represent the means,
which are the values used per bin for the calculation of the asymmetry.

∆σ =
s−2 − (

√
s+ ∆

√
s)−4

s−2
= 1− s2

(
√
s+ ∆

√
s)4

(C.17)
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The results are shown in Fig. C.4. We see a smaller cross-section than without

pT . Because the anti-parallel events have on average a greater kTB · kTY , this results

in a greater ∆
√
s, which in turn gives a smaller cross-section. Since we define our

asymmetries as the difference between the parallel and anti-parallel helicities, the

difference (and ALL) is positive. We note a larger effect at lower pT (smaller x).
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Figure C.4: ∆
√
s effect results. (left) The mean values for ∆

√
s per bin are fitted

to show a pT dependency. (right) The change in cross-section is shown: we see a
negative effect, the greater the change in

√
s, the smaller the cross-section. The

green line shows the difference in the two effects, and is positive. This is only the
difference between the red and blue lines and not ALL. The two quantities are related
by: δσ ≈ 2ALL.

C.3 The kT Kick in pT

A second effect to consider when including POAM in the measurement of π0 ALL

is that the addition of the kT from POAM might affect the ”natural” value of the

π0 pT . The measured pT is the sum of the pT due to the physics interaction between

colliding protons, which we will denote pT0 modified by an eventual kT push due to
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orbiting constituents as shown in Fig. C.5.

Tx

Tk

θ

Tp

 distributionT kick on pTk

||Tx - ||θ|| dTp||

π2

0
∫π2

1 kick = Tk

Figure C.5: The measured pT of the π0 is modified by the kT due to POAM. Because
of the lack of information regarding the kT direction relative to the jet-jet direc-
tion, we must assume an isotropic distribution. The mean kT kick is obtained by
integrating over 2π.

The relative direction of the jets and the kT kick is unknown and assumed to be

isotropic. We take the average value of the integral over all azimuthal angles:

kT kick(pT0, kT ) =
1

2π

∫ 2π

0
pTdθ − pT0 (C.18)

where:

pT =
√

(pT0 + kT cos θ)2 + (kT sin θ)2 (C.19)

In order to be consistent with the previous section, we will choose the 3-dimensional

model with Woods-Saxon (a = 5fm) density distribution. The values we use for kT

in Eq. (C.19) are the mean values for the parallel and anti-parallel helicities found

by modeling in Chapter 7 and shownn in Fig. 7.7: 633 MeV/c for simulated paral-

lel helicity events and 435 MeV/c for anti-parallel helicity events. Note that those
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values were calculated at the partonic level and so when we integrate Eq. (C.18)

numerically, we will use p̂T , the partonic pT as input, and our output will be the

partonic kT kick: k̂Tkick. Our p̂T values range from 1.0 GeV/c to 12.0 GeV/c in

steps of 0.2 GeV/c . The values for k̂Tkick are plotted and fitted in Fig. C.6.
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Figure C.6: Net k̂T kick due to POAM as a function of parton pT . A greater effect
is noted for the parallel helicity events, as was expected (see Chapter 7).

In order to obtain the kT kick for π0 pT we must modify the graph in Fig. C.6 by

z, the ratio of the partonic transverse momentum to the detected hadronic transverse

momentum.

z =
pT

p̂T

(C.20)

We know that the ratio of kT kick to pT is the same for the π0 and the parton, and

use z as a function of π0 pT to find the corresponding p̂T . From PYTHIA simulation

we can plot the values of z as a function of π0 pT . At higher pT where the values

start to fluctuate through lack of statistics, we fit an assymtotic function:

z(pT ) = A
(
1− e−kpT

)
(C.21)
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We can then plot the kT kick as a function of π0 pT (Fig. C.7).
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Figure C.7: (left) shows the z distribution as a function of π0 pT . (right) Net kT kick
due to POAM as a function of π0 pT .

This kT kick pushes the cross-section graphs toward positive x direction. Asym-

metry is measured as a function of pT , i.e. in the y direction (see Fig. C.8). Using

the kT kick results we can calculate the asymmetries in cross-section, knowing that

the pT distribution of π0 is proportional to (pT )−4 [22]. The modified cross-section

is given by:

σpar,anti =
α

(pT 0 − kT par,anti)4
(C.22)

where kT par,anti is not the kT kick calculated at pT0 (using the notation of Fig. C.8),

but the kT calculated at pTpar and pTanti, respectively. In other words, the new

parallel and anti-parallel cross-sections are calculated with the pT value had there

been no kT kick. The kT values to be subtracted for calculation of σpar,anti are

calculated from the right graph in Fig. C.7.
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Figure C.8: From kT kick to σ asymmetry. The kT par,anti values to be subtracted for
calculation of σpar,anti are calculated from the right graph in Fig. C.7, then substituted
into Eq. (C.22).

The results are shown in Fig. C.9 and combined with the cross-section asymmetry

due to the modified partonic
√
s calculated in the previous section. The combined

results for certain π0 pT values are given in Table C.1.

In the second graph the different ALL functions are calculated by:

ALL =
σpar − σanti

σpar + σanti

(C.23)

then multiplied by the Run3pp beam polarizations to give an estimated measured

effect. The effect is much greater for the kT kick than for ∆
√
s which reflects the

pT
−4(or s−2) dependence and how a small horizontal shift in the graph causes a large

shift in the vertical direction.
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Figure C.9: π0 ALL due to POAM. (left) The change in the cross-sections given as a
percentage of the unmodified cross-sections is shown. (right) The ALL due to POAM
(green line) is the sum of the ALL due to the asymmetry in the modification of the√
s and the ALL due to the asymmetry in mean kT kick. ALL has been multipled

by the beam polarizations for Run3pp to give an estimate of an expected measured
effect.

Monte Carlo pT = 1.0 GeV/c pT = 3.0 GeV/c pT = 8.0 GeV/c

ALL theory 1.7% 0.46% 0.11%

ALL Run3pp 0.12% 0.033% 0.0081%

ALL Run5pp 0.38% 0.10% 0.024%

Table C.1: Monte Carlo π0 ALL from POAM results. The first row is the theoretical
value calculated, while the Run3pp and Run5 values have been multiplied by PBPY .
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C.4 Conclusion

The purpose of this simulation is not to discredit the π0 ALL analysis. Nor are we

claiming that a π0 ALL result or lack thereof is necessarily a consequence of POAM.

For starters let us remind ourselves that these results are based on a classical model of

the proton with an arbitrary scale of constant pθ = 300MeV/c at a proton radius of

1.3fm. Even so, for Run3pp, the effect is estimated to be small even at low pT where

POAM would have the greatest impact. Nevertheless, it is important to consider the

different possible sources of asymmetry present in all asymmetry measurements and

to keep in mind the complex relationships at play.

To first order a π0 ALL result will most certainly be a consequence of ∆G. In

the case of confirmed zero results, however, interpretation becomes more difficult, as

POAM could play a role. In Run5 with an increased polarization a larger (though

still rather small) effect is expected (Table C.1). A zero result (or a small result

on the scale of our calculated asymmetry) with enough precision might also have

consequences for POAM; although disentangling that information from ∆G is as

problematic as the opposite. ∆G could be very small or zero, POAM could be

very small or zero, our model could be inaccurate, ∆G and POAM could cancel or

contribute equally in π0 ALL or nearly any combination of these factors are part of

a long list of possible explanations.
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